tf15: 中文语音识别

使用的数据集

THCHS30是Dong Wang, Xuewei Zhang, Zhiyong Zhang这几位大神发布的开放语音数据集,可用于开发中文语音识别系统。

为了感谢这几位大神,我是跪在电脑前写的本帖代码。

可以参考这个,tql: https://github.com/xxbb1234021/speech_recognition 

下载中文语音数据集(5G+):

#coding: utf-8  
import tensorflow as tf  
import numpy as np  
import os  
from collections import Counter  
import librosa  
  
from joblib import Parallel, delayed  
  
wav_path = 'data/wav/train'  
label_file = 'data/doc/trans/train.word.txt'
  
def get_wav_files(wav_path = wav_path):  
    wav_files = []  
    for (dirpath, dirnames, filenames) in os.walk(wav_path):  
        for filename in filenames:  
            if filename.endswith(".wav") or filename.endswith(".WAV"):  
                filename_path = os.sep.join([dirpath, filename])  
                if os.stat(filename_path).st_size < 240000:  
                    continue  
                wav_files.append(filename_path)  
  
    return wav_files  
  
wav_files = get_wav_files()  
  
def get_wav_label(wav_files = wav_files, label_file = label_file):  
    labels_dict = {}  
    with open(label_file, "r", encoding='utf-8') as f:  
        for label in f:  
            label = label.strip("\n")  
            label_id, label_text = label.split(' ', 1)  
            labels_dict[label_id] = label_text  
  
    labels = []  
    new_wav_files = []  
    for wav_file in wav_files:  
        wav_id = os.path.basename(wav_file).split(".")[0]  
        if wav_id in labels_dict:  
            labels.append(labels_dict[wav_id])  
            new_wav_files.append(wav_file)  
  
    return new_wav_files, labels  
  
def get_wav_length(wav):  
    import numpy as np  
    import librosa  
  
    print(wav)  
  
    wav, sr = librosa.load(wav)  
    mfcc = np.transpose(librosa.feature.mfcc(wav, sr), [1, 0])  
    return len(mfcc)  
  
pointer = 0  
def get_next_batches(batch_size, wav_max_len):  
    global pointer  
    batches_wavs = []  
    batches_labels = []  
    for i in range(batch_size):  
        wav, sr = librosa.load(wav_files[pointer])  
        mfcc = np.transpose(librosa.feature.mfcc(wav, sr), [1,0])  
        batches_wavs.append(mfcc.tolist())  
        batches_labels.append(labels_vector[pointer])  
        pointer += 1  
  
    # 取零补齐  
    # label append 0 , 0 对应的字符  
    # mfcc 默认的计算长度为20(n_mfcc of mfcc) 作为channel length  
    for mfcc in batches_wavs:  
        while len(mfcc) < wav_max_len:  
            mfcc.append([0]*20)  
    for label in batches_labels:  
        while len(label) < label_max_len:  
            label.append(0)  
  
    return batches_wavs, batches_labels  
  
conv1d_index = 0  
def conv1d_layer(input_tensor, size, dim, activation, scale, bias):  
    global conv1d_index  
    with tf.variable_scope("conv1d_" + str(conv1d_index)):  
        W = tf.get_variable('W', (size, input_tensor.get_shape().as_list()[-1], dim), dtype=tf.float32, initializer=tf.random_uniform_initializer(minval=-scale, maxval=scale))  
        if bias:  
            b = tf.get_variable('b', [dim], dtype = tf.float32, initializer=tf.constant_initializer(0))  
        out = tf.nn.conv1d(input_tensor, W, stride=1, padding='SAME') + (b if bias else 0)  
  
        if not bias:  
            beta = tf.get_variable('beta', dim, dtype=tf.float32, initializer=tf.constant_initializer(0))  
            gamma = tf.get_variable('gamma', dim, dtype=tf.float32, initializer=tf.constant_initializer(1))  
            mean_running = tf.get_variable('mean', dim, dtype=tf.float32, initializer=tf.constant_initializer(0))  
            variance_running = tf.get_variable('variance', dim, dtype=tf.float32, initializer=tf.constant_initializer(1))  
            mean, variance = tf.nn.moments(out, axes=list(range(len(out.get_shape()) - 1)))  
  
            def update_running_stat():  
                decay = 0.99  
  
                # 定义了均值方差指数衰减 见 http://blog.csdn.net/liyuan123zhouhui/article/details/70698264  
                update_op = [mean_running.assign(mean_running * decay + mean * (1 - decay)), variance_running.assign(variance_running * decay + variance * (1 - decay))]  
  
                # 指定先执行均值方差的更新运算 见 http://blog.csdn.net/u012436149/article/details/72084744  
                with tf.control_dependencies(update_op):  
                    return tf.identity(mean), tf.identity(variance)  
  
            # 条件运算(https://applenob.github.io/tf_9.html) 按照作者这里的指定 是不进行指数衰减的  
            m, v = tf.cond(tf.Variable(False, trainable=False), update_running_stat,lambda: (mean_running, variance_running))  
            out = tf.nn.batch_normalization(out, m, v, beta, gamma, 1e-8)  
  
        if activation == 'tanh':  
            out = tf.nn.tanh(out)  
        elif activation == 'sigmoid':  
            out = tf.nn.sigmoid(out)  
  
        conv1d_index += 1  
        return out  
  
# 极黑卷积层 https://www.zhihu.com/question/57414498  
# 其输入参数中要包含一个大于 1 的rate 输出 channels与输入相同  
aconv1d_index = 0  
def aconv1d_layer(input_tensor, size, rate, activation, scale, bias):  
    global aconv1d_index  
    with tf.variable_scope('aconv1d_' + str(aconv1d_index)):  
        shape = input_tensor.get_shape().as_list()  
  
        # 利用 2 维极黑卷积函数计算相应 1 维卷积,expand_dims squeeze做了相应维度处理  
        # 实际 上一个 tf.nn.conv1d 在之前的tensorflow版本中是没有的,其的一个实现也是经过维度调整后调用 tf.nn.conv2d  
        W = tf.get_variable('W', (1, size, shape[-1], shape[-1]), dtype=tf.float32, initializer=tf.random_uniform_initializer(minval=-scale, maxval=scale))  
        if bias:  
            b = tf.get_variable('b', [shape[-1]], dtype=tf.float32, initializer=tf.constant_initializer(0))  
        out = tf.nn.atrous_conv2d(tf.expand_dims(input_tensor, dim=1), W, rate = rate, padding='SAME')  
        out = tf.squeeze(out, [1])  
  
        if not bias:  
            beta = tf.get_variable('beta', shape[-1], dtype=tf.float32, initializer=tf.constant_initializer(0))  
            gamma = tf.get_variable('gamma', shape[-1], dtype=tf.float32, initializer=tf.constant_initializer(1))  
            mean_running = tf.get_variable('mean', shape[-1], dtype=tf.float32, initializer=tf.constant_initializer(0))  
            variance_running = tf.get_variable('variance', shape[-1], dtype=tf.float32, initializer=tf.constant_initializer(1))  
            mean, variance = tf.nn.moments(out, axes=list(range(len(out.get_shape()) - 1)))  
  
            def update_running_stat():  
                decay = 0.99  
                update_op = [mean_running.assign(mean_running * decay + mean * (1 - decay)), variance_running.assign(variance_running * decay + variance * (1 - decay))]  
                with tf.control_dependencies(update_op):  
                    return tf.identity(mean), tf.identity(variance)  
  
            m, v = tf.cond(tf.Variable(False, trainable=False), update_running_stat,lambda: (mean_running, variance_running))  
            out = tf.nn.batch_normalization(out, m, v, beta, gamma, 1e-8)  
  
        if activation == 'tanh':  
            out = tf.nn.tanh(out)  
        elif activation == 'sigmoid':  
            out = tf.nn.sigmoid(out)  
  
        aconv1d_index += 1  
        return out  
  
def speech_to_text_network(n_dim = 128, n_blocks = 3):  
    out = conv1d_layer(input_tensor=X, size=1, dim = n_dim, activation='tanh', scale=0.14, bias=False)  
  
    def residual_block(input_sensor, size, rate):  
        conv_filter = aconv1d_layer(input_tensor=input_sensor, size=size, rate=rate, activation='tanh', scale=0.03, bias=False)  
        conv_gate = aconv1d_layer(input_tensor=input_sensor, size=size, rate=rate, activation='sigmoid', scale=0.03, bias=False)  
        out = conv_filter * conv_gate  
        out = conv1d_layer(out, size = 1, dim=n_dim, activation='tanh', scale=0.08, bias=False)  
        return out + input_sensor, out  
  
    skip = 0  
    for _ in range(n_blocks):  
        for r in [1, 2, 4, 8, 16]:  
            out, s = residual_block(out, size = 7, rate = r)  
            skip += s  
  
    logit = conv1d_layer(skip, size = 1, dim = skip.get_shape().as_list()[-1], activation='tanh', scale = 0.08, bias=False)  
  
    # 最后卷积层输出是词汇表大小  
    logit = conv1d_layer(logit, size = 1, dim = words_size, activation = None, scale = 0.04, bias = True)  
  
    return logit  
  
# 作者自己定义了优化器  
class MaxPropOptimizer(tf.train.Optimizer):  
    def __init__(self, learning_rate=0.001, beta2=0.999, use_locking=False, name="MaxProp"):  
        super(MaxPropOptimizer, self).__init__(use_locking, name)  
        self._lr = learning_rate  
        self._beta2 = beta2  
        self._lr_t = None  
        self._beta2_t = None  
    def _prepare(self):  
        self._lr_t = tf.convert_to_tensor(self._lr, name="learning_rate")  
        self._beta2_t = tf.convert_to_tensor(self._beta2, name="beta2")  
    def _create_slots(self, var_list):  
        for v in var_list:  
            self._zeros_slot(v, "m", self._name)  
    def _apply_dense(self, grad, var):  
        lr_t = tf.cast(self._lr_t, var.dtype.base_dtype)  
        beta2_t = tf.cast(self._beta2_t, var.dtype.base_dtype)  
        if var.dtype.base_dtype == tf.float16:  
            eps = 1e-7  
        else:  
            eps = 1e-8  
        m = self.get_slot(var, "m")  
        m_t = m.assign(tf.maximum(beta2_t * m + eps, tf.abs(grad)))  
        g_t = grad / m_t  
        var_update = tf.assign_sub(var, lr_t * g_t)  
        return tf.group(*[var_update, m_t])  
    def _apply_sparse(self, grad, var):  
        return self._apply_dense(grad, var)  
  
def train_speech_to_text_network(wav_max_len):  
    logit = speech_to_text_network()  
  
    # CTC loss  
    indices = tf.where(tf.not_equal(tf.cast(Y, tf.float32), 0.))  
    target = tf.SparseTensor(indices=indices, values=tf.gather_nd(Y, indices) - 1, dense_shape=tf.cast(tf.shape(Y), tf.int64))  
    loss = tf.nn.ctc_loss(target, logit, sequence_len, time_major=False)  
    # optimizer  
    lr = tf.Variable(0.001, dtype=tf.float32, trainable=False)  
    optimizer = MaxPropOptimizer(learning_rate=lr, beta2=0.99)  
    var_list = [t for t in tf.trainable_variables()]  
    gradient = optimizer.compute_gradients(loss, var_list=var_list)  
    optimizer_op = optimizer.apply_gradients(gradient)  
  
    with tf.Session() as sess:  
        sess.run(tf.global_variables_initializer())  
  
        saver = tf.train.Saver(tf.global_variables())  
  
        for epoch in range(16):  
            sess.run(tf.assign(lr, 0.001 * (0.97 ** epoch)))  
  
            global pointer  
            pointer = 0  
            for batch in range(n_batch):  
                batches_wavs, batches_labels = get_next_batches(batch_size, wav_max_len)  
                train_loss, _ = sess.run([loss, optimizer_op], feed_dict={X: batches_wavs, Y: batches_labels})  
                print(epoch, batch, train_loss)  
            if epoch % 1 == 0:   #之前是5
                saver.save(sess, r'D:\\tensorflow\\Speech_Recognition\\speech.module', global_step=epoch)  
  
# 训练  
#train_speech_to_text_network()  
  
# 语音识别  
# 把 batch_size 改为1  
def speech_to_text(wav_file):  
    wav, sr = librosa.load(wav_file, mono=True)  
    mfcc = np.transpose(np.expand_dims(librosa.feature.mfcc(wav, sr), axis=0), [0,2,1])  
  
    logit = speech_to_text_network()  
  
    saver = tf.train.Saver()  
    with tf.Session() as sess:  
        saver.restore(sess, tf.train.latest_checkpoint('.'))  
  
    decoded = tf.transpose(logit, perm=[1, 0, 2])
    decoded, _ = tf.nn.ctc_beam_search_decoder(decoded, sequence_len, merge_repeated=False)
    decoded = sess.run(decoded, feed_dict={X: mfcc})
    # predict = tf.sparse_to_dense(decoded[0].indices, decoded[0].shape, decoded[0].values) + 1
    print (decoded)
    predict = tf.sparse_to_dense(decoded[0].indices,decoded[0].dense_shape,decoded[0].values) + 1
    # predict = decode_sparse_tensor(decoded[0])
    predict = sess.run(predict)
    print(predict)
  
  
if __name__ == "__main__":  
    wav_files = get_wav_files()  
    wav_files, labels = get_wav_label()  
    print(u"样本数 :", len(wav_files))  
  
    all_words = []  
    for label in labels:  
        # 字符分解  
        all_words += [word for word in label]  
  
    counter = Counter(all_words)  
    count_pairs = sorted(counter.items(), key=lambda x: -x[1])  
  
    words, _ = zip(*count_pairs)  
    words_size = len(words)  
    print(u"词汇表大小:", words_size)  
  
    word_num_map = dict(zip(words, range(len(words))))  
  
    # 当字符不在已经收集的words中时,赋予其应当的num,这是一个动态的结果  
    to_num = lambda word: word_num_map.get(word, len(words))  
  
    # 将单个file的标签映射为num 返回对应list,最终all file组成嵌套list  
    labels_vector = [list(map(to_num, label)) for label in labels]  
  
    label_max_len = np.max([len(label) for label in labels_vector])  
    print(u"最长句子的字数:" + str(label_max_len))  
  
    # 下面仅仅计算了语音特征相应的最长的长度。  
    # 如果仅仅是计算长度是否需要施加变换后计算长度?  
    parallel_read = False  
    if parallel_read:  
        wav_max_len = np.max(Parallel(n_jobs=7)(delayed(get_wav_length)(wav) for wav in wav_files))  
    else:  
        wav_max_len = 673  
    print("最长的语音", wav_max_len)  
  
    batch_size = 8  
    n_batch = len(wav_files) // batch_size  
  
    X = tf.placeholder(dtype=tf.float32, shape=[batch_size, None, 20])  
  
    # 实际mfcc中的元素并非同号,不严格的情况下如此得到序列长度也是可行的  
    sequence_len = tf.reduce_sum(tf.cast(tf.not_equal(tf.reduce_sum(X, reduction_indices=2), 0.), tf.int32), reduction_indices=1)  
  
    Y = tf.placeholder(dtype=tf.int32, shape=[batch_size, None])  
  
    train_speech_to_text_network(wav_max_len)  

 

 

后续:从麦克风获得语音输入,使用上面的模型进行识别。

 

 

然后预测可以用下边这个:

 

if __name__ == "__main__":
    
    wav_files = get_wav_files()  
    wav_files, labels = get_wav_label()  
    print(u"样本数 :", len(wav_files))  
  
    all_words = []  
    for label in labels:  
        # 字符分解  
        all_words += [word for word in label]  
  
    counter = Counter(all_words)  
    count_pairs = sorted(counter.items(), key=lambda x: -x[1])  
  
    words, _ = zip(*count_pairs)  
    words_size = len(words)  
    print(u"词汇表大小:", words_size)  
  
    word_num_map = dict(zip(words, range(len(words))))  
  
    # 当字符不在已经收集的words中时,赋予其应当的num,这是一个动态的结果  
    to_num = lambda word: word_num_map.get(word, len(words))  
  
    # 将单个file的标签映射为num 返回对应list,最终all file组成嵌套list  
    labels_vector = [list(map(to_num, label)) for label in labels]  
  
    label_max_len = np.max([len(label) for label in labels_vector])  
    print(u"最长句子的字数:" + str(label_max_len))  
  
    # 下面仅仅计算了语音特征相应的最长的长度。  
    # 如果仅仅是计算长度是否需要施加变换后计算长度?  
    parallel_read = False  
    if parallel_read:  
        wav_max_len = np.max(Parallel(n_jobs=7)(delayed(get_wav_length)(wav) for wav in wav_files))  
    else:  
        wav_max_len = 673  
    print("最长的语音", wav_max_len)  
  
    batch_size = 1 
    n_batch = len(wav_files) // batch_size
  
    X = tf.placeholder(dtype=tf.float32, shape=[batch_size, None, 20])
  
    # 实际mfcc中的元素并非同号,不严格的情况下如此得到序列长度也是可行的  
    sequence_len = tf.reduce_sum(tf.cast(tf.not_equal(tf.reduce_sum(X, reduction_indices=2), 0.), tf.int32), reduction_indices=1)  
  
    Y = tf.placeholder(dtype=tf.int32, shape=[batch_size, None])
  
    #train_speech_to_text_network(wav_max_len)  #训练
    
    wav_file = "./D4_750.wav"
    print (wav_file)
    speech_to_text(wav_file)

 

 

相关资源:

 

 

  • 深度学习大牛Andrew Ng:Speech Recognition and Beyond
  • https://github.com/kaldi-asr/kaldi
  • http://cmusphinx.sourceforge.net
  • https://pypi.python.org/pypi/SpeechRecognition

Share the post "TensorFlow练习15: 中文语音识别"

  •  

 

你可能感兴趣的:(机器学习,Deep,learning,TensorFlow练习汇总)