Murmurhash 哈希算法 介绍与实现

最近在项目代码中看到了一种hash算法,以前没有遇见过,在此记录下来。
 

一、介绍

  MurmurHash 是一种非加密型哈希函数,适用于一般的哈希检索操作。 由Austin Appleby在2008年发明, 并出现了多个变种,都已经发布到了公有领域(public domain)。与其它流行的哈希函数相比,对于规律性较强的key,MurmurHash的随机分布特征表现更良好。—摘自wiki

  Redis在实现字典时用到了两种不同的哈希算法,MurmurHash便是其中一种(另一种是djb),在Redis中应用十分广泛,包括数据库、集群、哈希键、阻塞操作等功能都用到了这个算法。发明算法的作者被邀到google工作,该算法最新版本是MurmurHash3,基于MurmurHash2改进了一些小瑕疵,使得速度更快,实现了32位(低延时)、128位HashKey,尤其对大块的数据,具有较高的平衡性与低碰撞率。
 

二、代码

代码来自GitHub: https://github.com/aappleby/smhasher
因为Murmurhash最新版本是MurmurHash3,这里只简单测试了一下MurmurHash3

Murmurhash3.h

//-----------------------------------------------------------------------------
// MurmurHash3 was written by Austin Appleby, and is placed in the public
// domain. The author hereby disclaims copyright to this source code.
 
#ifndef _MURMURHASH3_H_
#define _MURMURHASH3_H_
 
//-----------------------------------------------------------------------------
// Platform-specific functions and macros
 
// Microsoft Visual Studio
 
#if defined(_MSC_VER) && (_MSC_VER < 1600)
 
typedef unsigned char uint8_t;
typedef unsigned int uint32_t;
typedef unsigned __int64 uint64_t;
 
// Other compilers
 
#else   // defined(_MSC_VER)
 
#include 
 
#endif // !defined(_MSC_VER)
 
//-----------------------------------------------------------------------------
 
void MurmurHash3_x86_32  ( const void * key, int len, uint32_t seed, void * out );
 
void MurmurHash3_x86_128 ( const void * key, int len, uint32_t seed, void * out );
 
void MurmurHash3_x64_128 ( const void * key, int len, uint32_t seed, void * out );
 
//-----------------------------------------------------------------------------
 
#endif // _MURMURHASH3_H_

Murmurhash3.c

//-----------------------------------------------------------------------------
// MurmurHash3 was written by Austin Appleby, and is placed in the public
// domain. The author hereby disclaims copyright to this source code.
 
// Note - The x86 and x64 versions do _not_ produce the same results, as the
// algorithms are optimized for their respective platforms. You can still
// compile and run any of them on any platform, but your performance with the
// non-native version will be less than optimal.
// 
// github : https://github.com/aappleby/smhasher
 
#include "MurmurHash3.h"
 
//-----------------------------------------------------------------------------
// Platform-specific functions and macros
 
// Microsoft Visual Studio
 
#if defined(_MSC_VER)
 
#define FORCE_INLINE    __forceinline
 
#include 
 
#define ROTL32(x,y) _rotl(x,y)
#define ROTL64(x,y) _rotl64(x,y)
 
#define BIG_CONSTANT(x) (x)
 
// Other compilers
 
#else   // defined(_MSC_VER)
#define FORCE_INLINE inline __attribute__((always_inline))
 
inline static uint32_t rotl32 ( uint32_t x, int8_t r )
{
    return (x << r) | (x >> (32 - r));
}
 
inline static uint64_t rotl64 ( uint64_t x, int8_t r )
{
    return (x << r) | (x >> (64 - r));
}
 
#define ROTL32(x,y) rotl32(x,y)
#define ROTL64(x,y) rotl64(x,y)
 
#define BIG_CONSTANT(x) (x##LLU)
 
#endif // !defined(_MSC_VER)
 
//-----------------------------------------------------------------------------
// Block read - if your platform needs to do endian-swapping or can only
// handle aligned reads, do the conversion here
 
FORCE_INLINE uint32_t getblock32 ( const uint32_t * p, int i )
{
    return p[i];
}
 
FORCE_INLINE uint64_t getblock64 ( const uint64_t * p, int i )
{
    return p[i];
}
 
//-----------------------------------------------------------------------------
// Finalization mix - force all bits of a hash block to avalanche
 
FORCE_INLINE uint32_t fmix32 ( uint32_t h )
{
    h ^= h >> 16;
    h *= 0x85ebca6b;
    h ^= h >> 13;
    h *= 0xc2b2ae35;
    h ^= h >> 16;
 
    return h;
}
 
//----------
 
FORCE_INLINE uint64_t fmix64 ( uint64_t k )
{
    k ^= k >> 33;
    k *= BIG_CONSTANT(0xff51afd7ed558ccd);
    k ^= k >> 33;
    k *= BIG_CONSTANT(0xc4ceb9fe1a85ec53);
    k ^= k >> 33;
 
    return k;
}
 
//-----------------------------------------------------------------------------
 
void MurmurHash3_x86_32 ( const void * key, int len,
    ¦   uint32_t seed, void * out )
{
    const uint8_t * data = (const uint8_t*)key;
    const int nblocks = len / 4;
 
    uint32_t h1 = seed;
 
    const uint32_t c1 = 0xcc9e2d51;
    const uint32_t c2 = 0x1b873593;
 
    //----------
    // body
 
    const uint32_t * blocks = (const uint32_t *)(data + nblocks*4);
 
    for(int i = -nblocks; i; i++)
    {
        uint32_t k1 = getblock32(blocks,i);
 
        k1 *= c1;
        k1 = ROTL32(k1,15);
        k1 *= c2;
 
        h1 ^= k1;
        h1 = ROTL32(h1,13);
        h1 = h1*5+0xe6546b64;
    }
 
    //----------
    // tail
 
    const uint8_t * tail = (const uint8_t*)(data + nblocks*4);
 
    uint32_t k1 = 0;
 
    switch(len & 3)
    {
        case 3: k1 ^= tail[2] << 16;
        case 2: k1 ^= tail[1] << 8;
        case 1: k1 ^= tail[0];
                k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
    };
 
    //----------
    // finalization
 
    h1 ^= len;
 
    h1 = fmix32(h1);
 
    *(uint32_t*)out = h1;
}
 
//-----------------------------------------------------------------------------
 
void MurmurHash3_x86_128 ( const void * key, const int len,
        uint32_t seed, void * out )
{
    const uint8_t * data = (const uint8_t*)key;
    const int nblocks = len / 16;
 
    uint32_t h1 = seed;
    uint32_t h2 = seed;
    uint32_t h3 = seed;
    uint32_t h4 = seed;
 
    const uint32_t c1 = 0x239b961b;
    const uint32_t c2 = 0xab0e9789;
    const uint32_t c3 = 0x38b34ae5;
    const uint32_t c4 = 0xa1e38b93;
 
    //----------
    // body
 
    const uint32_t * blocks = (const uint32_t *)(data + nblocks*16);
 
    for(int i = -nblocks; i; i++)
    {
        uint32_t k1 = getblock32(blocks,i*4+0);
        uint32_t k2 = getblock32(blocks,i*4+1);
        uint32_t k3 = getblock32(blocks,i*4+2);
        uint32_t k4 = getblock32(blocks,i*4+3);
 
        k1 *= c1; k1  = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
 
        h1 = ROTL32(h1,19); h1 += h2; h1 = h1*5+0x561ccd1b;
 
        k2 *= c2; k2  = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
 
        h2 = ROTL32(h2,17); h2 += h3; h2 = h2*5+0x0bcaa747;
 
        k3 *= c3; k3  = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
 
        h3 = ROTL32(h3,15); h3 += h4; h3 = h3*5+0x96cd1c35;
 
        k4 *= c4; k4  = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
 
        h4 = ROTL32(h4,13); h4 += h1; h4 = h4*5+0x32ac3b17;
    }
 
    //----------
    // tail
 
    const uint8_t * tail = (const uint8_t*)(data + nblocks*16);
 
    uint32_t k1 = 0;
    uint32_t k2 = 0;
    uint32_t k3 = 0;
    uint32_t k4 = 0;
 
    switch(len & 15)
    {
        case 15: k4 ^= tail[14] << 16;
        case 14: k4 ^= tail[13] << 8;
        case 13: k4 ^= tail[12] << 0;
                 k4 *= c4; k4  = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
 
        case 12: k3 ^= tail[11] << 24;
        case 11: k3 ^= tail[10] << 16;
        case 10: k3 ^= tail[ 9] << 8;
        case  9: k3 ^= tail[ 8] << 0;
                 k3 *= c3; k3  = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
 
        case  8: k2 ^= tail[ 7] << 24;
        case  7: k2 ^= tail[ 6] << 16;
        case  6: k2 ^= tail[ 5] << 8;
        case  5: k2 ^= tail[ 4] << 0;
                 k2 *= c2; k2  = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
 
        case  4: k1 ^= tail[ 3] << 24;
        case  3: k1 ^= tail[ 2] << 16;
        case  2: k1 ^= tail[ 1] << 8;
        case  1: k1 ^= tail[ 0] << 0;
                 k1 *= c1; k1  = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
    };
 
    //----------
    // finalization
 
    h1 ^= len; h2 ^= len; h3 ^= len; h4 ^= len;
 
    h1 += h2; h1 += h3; h1 += h4;
    h2 += h1; h3 += h1; h4 += h1;
 
    h1 = fmix32(h1);
    h2 = fmix32(h2);
    h3 = fmix32(h3);
    h4 = fmix32(h4);
 
    h1 += h2; h1 += h3; h1 += h4;
    h2 += h1; h3 += h1; h4 += h1;
 
    ((uint32_t*)out)[0] = h1;
    ((uint32_t*)out)[1] = h2;
    ((uint32_t*)out)[2] = h3;
    ((uint32_t*)out)[3] = h4;
}
 
//-----------------------------------------------------------------------------
 
void MurmurHash3_x64_128 ( const void * key, const int len,
        const uint32_t seed, void * out )
{
    const uint8_t * data = (const uint8_t*)key;
    const int nblocks = len / 16;
 
    uint64_t h1 = seed;
    uint64_t h2 = seed;
 
    const uint64_t c1 = BIG_CONSTANT(0x87c37b91114253d5);
    const uint64_t c2 = BIG_CONSTANT(0x4cf5ad432745937f);
 
    //----------
    // body
 
    const uint64_t * blocks = (const uint64_t *)(data);
 
    for(int i = 0; i < nblocks; i++)
    {
        uint64_t k1 = getblock64(blocks,i*2+0);
        uint64_t k2 = getblock64(blocks,i*2+1);
 
        k1 *= c1; k1  = ROTL64(k1,31); k1 *= c2; h1 ^= k1;
 
        h1 = ROTL64(h1,27); h1 += h2; h1 = h1*5+0x52dce729;
 
        k2 *= c2; k2  = ROTL64(k2,33); k2 *= c1; h2 ^= k2;
 
        h2 = ROTL64(h2,31); h2 += h1; h2 = h2*5+0x38495ab5;
    }
 
    //----------
    // tail
 
    const uint8_t * tail = (const uint8_t*)(data + nblocks*16);
 
    uint64_t k1 = 0;
    uint64_t k2 = 0;
 
    switch(len & 15)
    {
        case 15: k2 ^= ((uint64_t)tail[14]) << 48;
        case 14: k2 ^= ((uint64_t)tail[13]) << 40;
        case 13: k2 ^= ((uint64_t)tail[12]) << 32;
        case 12: k2 ^= ((uint64_t)tail[11]) << 24;
        case 11: k2 ^= ((uint64_t)tail[10]) << 16;
        case 10: k2 ^= ((uint64_t)tail[ 9]) << 8;
        case  9: k2 ^= ((uint64_t)tail[ 8]) << 0;
                 k2 *= c2; k2  = ROTL64(k2,33); k2 *= c1; h2 ^= k2;
 
        case  8: k1 ^= ((uint64_t)tail[ 7]) << 56;
        case  7: k1 ^= ((uint64_t)tail[ 6]) << 48;
        case  6: k1 ^= ((uint64_t)tail[ 5]) << 40;
        case  5: k1 ^= ((uint64_t)tail[ 4]) << 32;
        case  4: k1 ^= ((uint64_t)tail[ 3]) << 24;
        case  3: k1 ^= ((uint64_t)tail[ 2]) << 16;
        case  2: k1 ^= ((uint64_t)tail[ 1]) << 8;
        case  1: k1 ^= ((uint64_t)tail[ 0]) << 0;
                 k1 *= c1; k1  = ROTL64(k1,31); k1 *= c2; h1 ^= k1;
    };
 
    //----------
    // finalization
 
    h1 ^= len; h2 ^= len;
 
    h1 += h2;
    h2 += h1;
 
    h1 = fmix64(h1);
    h2 = fmix64(h2);
 
    h1 += h2;
    h2 += h1;
 
    ((uint64_t*)out)[0] = h1;
    ((uint64_t*)out)[1] = h2;
}
 
//-----------------------------------------------------------------------------
#if 1
 
#include 
#include 
#define SEED 0x97c29b3a
 
int main()
{
    const char *str="abcdefghijklmn";
 
    uint32_t out1;
    MurmurHash3_x86_32(str, strlen(str), SEED, &out1);
    printf("%u\n", out1);
 
    uint32_t out2[4];
    MurmurHash3_x86_128(str, strlen(str), SEED, out2);
    printf("%u, %u, %u, %u\n", out2[0], out2[1], out2[2], out2[3]);
 
    uint64_t out3[2];
    MurmurHash3_x64_128(str, strlen(str), SEED, out3);
    printf("%lu, %lu\n", out3[0], out3[1]);
 
    return 0;
}
 
#endif

MurmurHash3_x86_32 将key 哈希32位的正整数
MurmurHash3_x86_128 将key 哈希128位的4个无符号位32整数,x86是32位的
MurmurHash3_x64_128 将key 哈希128位的2个无符号64位整数,x64是64位的

编译: gcc -std=c99 MurmurHash3.c MurmurHash3.h -o MurmurHash3

注意: 直接从GitHub拉取的代码在Linux可能编译不过去。
问题是在定义rotl32() 和rotl64()使用关键字inline,要么把inline去掉,要么在inline后面加关键字static.

 
 
 
 
 
 
 
关注公众号"小败日记",搬砖过程遇到的问题,大家一起探讨,资源共享

小败日记公众号

你可能感兴趣的:(数据结构与算法,linux应用编程)