使用线性分类模型从事良/恶性肿瘤的预测任务
http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data
1、获得数据
import pandas as pd
import numpy as np
column_names = ['Sample code number', 'Clump Thickness', 'Uniformity of Call Size'
'Uniformity of Cell Shape', 'Marginal Adhesion', 'Single Epithelial Cell Size',
'Bare Nuclei', 'Bland Chromatin', 'Normal Nucleoli', 'Mitoses', 'class']
data = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data', names = column_names)
data.shape
# drop nan
# 去掉缺失值
data = data.replace(to_replace='?', value=np.nan)
data = data.dropna(how = 'any')
data.shape
2、准备数据
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(data[column_names[1:9]], data[column_names[9]], test_size = 0.25, random_state = 33)
y_train.value_counts()
y_test.value_counts()
3、标准化数据
# 标准化数据,保证每个维度的特征数据方差为1,均值为0,
# 让预测的结果不会被每个过大的特征值主导
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)
4、建立模型预测数据
lr = LogisticRegression()
sgdc = SGDClassifier()
lr.fit(X_train, y_train)
lr_y_predict = lr.predict(X_test)
sgdc.fit(X_train, y_train)
sgdc_y_predict = sgdc.predict(X_test)
5、性能分析
from sklearn.metrics import classification_report
print(lr.score(X_test, y_test))
print(classification_report(y_test, lr_y_predict, target_names = ['Benign', 'Malignant']))
print(classification_report(y_test, sgdc_y_predict, target_names = ['Benign', 'Malignant']))
**
四、代码地址
——
**