学习笔记 | 深度学习开发—TensorFlow实践(线性回归问题TensorFlow实战)

 

核心步骤

1.准备数据

2.构建数据

3.训练模型

4.进行预测

线性方程

单变量的线性方程可以表示为:

y=w*x+b

本例通过生成人工数据集。随机生成一个近似采样随机分布,使得

w=2.0, b=1, 并加入一个噪声,噪声的最大振幅为0.4

学习笔记 | 深度学习开发—TensorFlow实践(线性回归问题TensorFlow实战)_第1张图片

 

人工数据集生成

import tensorflow as tf#载入tensorflow
import numpy as np#载入numpy
import  matplotlib.pyplot as  plt#载入matplotlib

#设置随机数种子
np.random.seed(5)
#直接采用np生成等差数列的方法,生成100个点,每个点的取值在-1~1之间
x_data=np.linspace(-1,1,100)
#y=2x+1+噪声。其中噪声维度与x_data一致
y_data=2*x_data+1.0+np.random(*x_data.shape)*0.4

 

利用matplotlib画出生成结果

 

##利用matplotlib画出生成结果
#画出随机生成数据的散点图
plt.scatter(x_data,y_data)
#画出我们想要学习到的线性函数y=2x+1
plt.plot(x_data,2*x_data+1.0,color='red',linewidth=3)
plt.show()

 学习笔记 | 深度学习开发—TensorFlow实践(线性回归问题TensorFlow实战)_第2张图片

构建模型

##构建模型
#定义训练数据的占位符,x是特征值,y是标签值
x=tf.placeholder("float",name="x")
y=tf.placeholder("float",name="y")
#定义模型函数
def model(x,w,b):
    return tf.multiply(x,w)+b

 

定义模型结构

创建变量

TensorFlow变量的声明函数是tf.Variable

tf.Variable的作用是保存和更新参数

变量的初始值可以是随机数、常数、或是通过其他变量的初始值计算得到

##定义模型结构
#创建变量
#构建线性函数的斜率,变量w
w=tf.Variable(1.0,name="w0")

#构建线性函数的截距,变量b
b=tf.Variable(0.0,name="b0")

#pred是预测值,前向计算
pre=model(x,w,b)

 

训练模型

设置训练参数

##训练模型
#迭代次数(训练轮数)
train_epochs=10
#学习率
learning_rate=0.5

定义损失函数

损失函数用于描述预测值与真实值之间的误差,从而指导模型收敛方向。常见损失函数:均方差(Mean Square Error, MSE)和交叉熵(cross-entropy)

L2 损失函数

##定义损失函数
#采用均方差作为损失函数
loss_function=tf.reduce_mean(tf.square(y-pred))



定义优化器

定义优化器Optimizer,初始化一个GradientDescentOptimizer

设置学习率和优化目标:最小化损失

 

##定义优化器
#梯度下降优化器
optimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(loss_function)

 

创建会话

##创建会话
sess=tf.Session()
#变量初始化
init=tf.global_variables_initializer()
sess.run(init)

 

迭代训练

模型训练阶段,设置迭代轮次,每次通过将样本逐个输入模型,进行梯度下降优化操作每轮迭代后,绘制出模型曲线

##迭代训练
#开始训练,轮数为epoch,采用SGD随机梯度下降优化方法
for epoch in range(train_epochs):
    for xs,ys in zip(x_data,y_data):
        _,loss=sess.run([optimizer,loss_function],feed_dict={x:xs,y:ys})
    b0temp=b.eval(session=sess)
    w0temp=w.eval(session=sess)
    #画图
    plt.plot(x_data,w0temp*x_data+b0temp)

 

迭代训练结果

学习笔记 | 深度学习开发—TensorFlow实践(线性回归问题TensorFlow实战)_第3张图片

学习笔记 | 深度学习开发—TensorFlow实践(线性回归问题TensorFlow实战)_第4张图片

 

 

从上图可以看出,本案例所拟合的模型较简单,训练3次之后已经接近收敛对于复杂模型,需要更多次训练才能收敛

 

结果查看

结果

当训练完成后,打印查看参数

print("w",sess.run(w))#w的值应该在2附近
print("b",sess.run(b))#b的值应该在1附近

w 2.1227033

b 1.046243

 

结果可视化

plt.scatter(x_data,y_data,label='Original data')
plt.plot(x_data,x_data*sess.run(w)+sess.run(b),\

lable='Fitted line',color='r',linewidth=3)
plt.legend(loc=2)#通过参数loc指定图例位置

学习笔记 | 深度学习开发—TensorFlow实践(线性回归问题TensorFlow实战)_第5张图片

 

 

利用模型 进行预测

#利用模型预测
x_test=3.21
predict=sess.run(pred,feed_dict={x:x_test})
print("预测值:%f"%predict)

target=2*x_test+1.0
print("目标值:%f"%target)

 

预测值:7.860121

目标值:7.420000

 

小结

(1)生成人工数据集及其可视化

(2)构建线性模型

(3)定义损失函数

(4)定义优化器、最小化损失函数

(5)训练结果的可视化

(6)利用学习到的模型进行预测

 

 

显示损失值

##迭代训练
#开始训练,轮数为epoch,采用SGD随机梯度下降优化方法
step=0#记录训练次数
loss_list=[]#用于保存loss值的列表
for epoch in range(train_epochs):
    for xs,ys in zip(x_data,y_data):
        _,loss=sess.run([optimizer,loss_function],feed_dict={x:xs,y:ys})

        #显示损失值loss
        #display_step:控制报告粒度
        #例如如果display_step设为2,则将每训练2个样本输出一次损失值
        #与超参数不同,修改display_step不会更改模型所学习的规律
        display_step=10
        loss_list.append(loss)
        step=step+1
        if step % display_step==0:
            print("Train Epoch:",'%02d' % (epoch+1),"Step:%03d" % (step),"loss=",\
                  "{:.9f}".format(loss))


    b0temp=b.eval(session=sess)
    w0temp=w.eval(session=sess)

Train Epoch: 01 Step:010 loss= 0.142807513

Train Epoch: 01 Step:020 loss= 2.077342749

Train Epoch: 01 Step:030 loss= 0.002882579

Train Epoch: 01 Step:040 loss= 0.515065134

Train Epoch: 01 Step:050 loss= 0.015309114

Train Epoch: 01 Step:060 loss= 0.027440201

Train Epoch: 01 Step:070 loss= 2.683870554

Train Epoch: 01 Step:080 loss= 0.020359127

Train Epoch: 01 Step:090 loss= 0.137483820

Train Epoch: 01 Step:100 loss= 0.000411486

Train Epoch: 02 Step:110 loss= 0.000086412

Train Epoch: 02 Step:120 loss= 2.024667263

Train Epoch: 02 Step:130 loss= 0.006071734

Train Epoch: 02 Step:140 loss= 0.474449933

Train Epoch: 02 Step:150 loss= 0.008577253

Train Epoch: 02 Step:160 loss= 0.038185447

Train Epoch: 02 Step:170 loss= 2.601174593

Train Epoch: 02 Step:180 loss= 0.015048586

Train Epoch: 02 Step:190 loss= 0.126568303

Train Epoch: 02 Step:200 loss= 0.000983429

Train Epoch: 03 Step:210 loss= 0.170813769

Train Epoch: 03 Step:220 loss= 2.023455858

Train Epoch: 03 Step:230 loss= 0.006033598

Train Epoch: 03 Step:240 loss= 0.474852115

Train Epoch: 03 Step:250 loss= 0.008635622

Train Epoch: 03 Step:260 loss= 0.038067851

Train Epoch: 03 Step:270 loss= 2.602004528

Train Epoch: 03 Step:280 loss= 0.015098289

Train Epoch: 03 Step:290 loss= 0.126676723

Train Epoch: 03 Step:300 loss= 0.000976413

Train Epoch: 04 Step:310 loss= 0.167299852

Train Epoch: 04 Step:320 loss= 2.023467541

Train Epoch: 04 Step:330 loss= 0.006033977

Train Epoch: 04 Step:340 loss= 0.474848181

Train Epoch: 04 Step:350 loss= 0.008635025

Train Epoch: 04 Step:360 loss= 0.038069107

Train Epoch: 04 Step:370 loss= 2.601995945

Train Epoch: 04 Step:380 loss= 0.015097762

Train Epoch: 04 Step:390 loss= 0.126675367

Train Epoch: 04 Step:400 loss= 0.000976473

Train Epoch: 05 Step:410 loss= 0.167335451

Train Epoch: 05 Step:420 loss= 2.023467302

Train Epoch: 05 Step:430 loss= 0.006033987

Train Epoch: 05 Step:440 loss= 0.474848181

Train Epoch: 05 Step:450 loss= 0.008635025

Train Epoch: 05 Step:460 loss= 0.038069062

Train Epoch: 05 Step:470 loss= 2.601996422

Train Epoch: 05 Step:480 loss= 0.015097790

Train Epoch: 05 Step:490 loss= 0.126675367

Train Epoch: 05 Step:500 loss= 0.000976473

Train Epoch: 06 Step:510 loss= 0.167335063

Train Epoch: 06 Step:520 loss= 2.023467541

Train Epoch: 06 Step:530 loss= 0.006033987

Train Epoch: 06 Step:540 loss= 0.474848181

Train Epoch: 06 Step:550 loss= 0.008635025

Train Epoch: 06 Step:560 loss= 0.038069062

Train Epoch: 06 Step:570 loss= 2.601996422

Train Epoch: 06 Step:580 loss= 0.015097790

Train Epoch: 06 Step:590 loss= 0.126675367

Train Epoch: 06 Step:600 loss= 0.000976473

Train Epoch: 07 Step:610 loss= 0.167335063

Train Epoch: 07 Step:620 loss= 2.023467541

Train Epoch: 07 Step:630 loss= 0.006033987

Train Epoch: 07 Step:640 loss= 0.474848181

Train Epoch: 07 Step:650 loss= 0.008635025

Train Epoch: 07 Step:660 loss= 0.038069062

Train Epoch: 07 Step:670 loss= 2.601996422

Train Epoch: 07 Step:680 loss= 0.015097790

Train Epoch: 07 Step:690 loss= 0.126675367

Train Epoch: 07 Step:700 loss= 0.000976473

Train Epoch: 08 Step:710 loss= 0.167335063

Train Epoch: 08 Step:720 loss= 2.023467541

Train Epoch: 08 Step:730 loss= 0.006033987

Train Epoch: 08 Step:740 loss= 0.474848181

Train Epoch: 08 Step:750 loss= 0.008635025

Train Epoch: 08 Step:760 loss= 0.038069062

Train Epoch: 08 Step:770 loss= 2.601996422

Train Epoch: 08 Step:780 loss= 0.015097790

Train Epoch: 08 Step:790 loss= 0.126675367

Train Epoch: 08 Step:800 loss= 0.000976473

Train Epoch: 09 Step:810 loss= 0.167335063

Train Epoch: 09 Step:820 loss= 2.023467541

Train Epoch: 09 Step:830 loss= 0.006033987

Train Epoch: 09 Step:840 loss= 0.474848181

Train Epoch: 09 Step:850 loss= 0.008635025

Train Epoch: 09 Step:860 loss= 0.038069062

Train Epoch: 09 Step:870 loss= 2.601996422

Train Epoch: 09 Step:880 loss= 0.015097790

Train Epoch: 09 Step:890 loss= 0.126675367

Train Epoch: 09 Step:900 loss= 0.000976473

Train Epoch: 10 Step:910 loss= 0.167335063

Train Epoch: 10 Step:920 loss= 2.023467541

Train Epoch: 10 Step:930 loss= 0.006033987

Train Epoch: 10 Step:940 loss= 0.474848181

Train Epoch: 10 Step:950 loss= 0.008635025

Train Epoch: 10 Step:960 loss= 0.038069062

Train Epoch: 10 Step:970 loss= 2.601996422

Train Epoch: 10 Step:980 loss= 0.015097790

Train Epoch: 10 Step:990 loss= 0.126675367

Train Epoch: 10 Step:1000 loss= 0.000976473

 

图形化显示损失值

plt.plot(loss_list)
plt.plot(loss_list,'r+')

学习笔记 | 深度学习开发—TensorFlow实践(线性回归问题TensorFlow实战)_第6张图片

学习笔记 | 深度学习开发—TensorFlow实践(线性回归问题TensorFlow实战)_第7张图片

随机梯度下降

 

在梯度下降法中,批量指的是用于在单次迭代中计算梯度的样本总数 假定批量是指整个数据集,数据集通常包含很大样本(数万甚至数千亿), 此外, 数据集通常包含多个特征。因此,一个批量可能相当巨大。如果是超大批量,则单次迭代就可能要花费很长时间进行计算

随机梯度下降法 (SGD) 每次迭代只使用一个样本(批量大小为 1),如果进行足够的迭代,SGD 也可以发挥作用。“随机”这一术语表示构成各个批量的一个样本都是随机选择的

小批量随机梯下降法(小批量 SGD)是介于全批量迭代与 SGD 之间的折衷方案。小批量通常包含 10-1000 个随机选择的样本。小批量SGD可以减少 SGD 中的杂乱样本数量,但仍然比全批量更高效

你可能感兴趣的:(学习笔记 | 深度学习开发—TensorFlow实践(线性回归问题TensorFlow实战))