图结构练习——最小生成树
Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^
题目描述
输入
输出
示例输入
3 2 1 2 1 1 3 1 1 0
示例输出
2 0
提示
来源
示例程序
/*prim算法*/
#include
#include
#include
#include
#include
using namespace std;
const int inf=999999;
int map[110][110];//创建map二维数组储存图表
int dis[110];//dis数组记录每2个点间最小权值
int vis[100];//visited数组标记某点是否已访问
int sum;//代表所求的权值之和
void prim(int n)
{
int i,j;
int pos;
memset(vis,0,sizeof(vis));
for(i=1; i<=n; i++)
{
dis[i]=map[1][i];//第一次给dis数组赋值
}
vis[1]=1;//从某点开始,分别标记和记录该点
for(i=1; i=inf) break;
//最小权值累加
sum+=min;
vis[pos]=1;//标记该点
for(j=1; j<=n; j++)
{
if(!vis[j] && map[pos][j]c)
map[a][b]=map[b][a]=c;
}
prim(n);
printf("%d\n",sum);
}
return 0;
}
最小生成树之prim算法
Prim算法
1.概览
普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克发现;并在1957年由美国计算机科学家罗伯特·普里姆独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。
2.算法简单描述
1).输入:一个加权连通图,其中顶点集合为V,边集合为E;
2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;
3).重复下列操作,直到Vnew = V:
a.在集合E中选取权值最小的边,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
b.将v加入集合Vnew中,将边加入集合Enew中;
4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。
下面对算法的图例描述
图例 | 说明 | 不可选 | 可选 | 已选(Vnew) |
---|---|---|---|---|
|
此为原始的加权连通图。每条边一侧的数字代表其权值。 | - | - | - |
|
顶点D被任意选为起始点。顶点A、B、E和F通过单条边与D相连。A是距离D最近的顶点,因此将A及对应边AD以高亮表示。 | C, G | A, B, E, F | D |
|
下一个顶点为距离D或A最近的顶点。B距D为9,距A为7,E为15,F为6。因此,F距D或A最近,因此将顶点F与相应边DF以高亮表示。 | C, G | B, E, F | A, D |
算法继续重复上面的步骤。距离A为7的顶点B被高亮表示。 | C | B, E, G | A, D, F | |
|
在当前情况下,可以在C、E与G间进行选择。C距B为8,E距B为7,G距F为11。E最近,因此将顶点E与相应边BE高亮表示。 | 无 | C, E, G | A, D, F, B |
|
这里,可供选择的顶点只有C和G。C距E为5,G距E为9,故选取C,并与边EC一同高亮表示。 | 无 | C, G | A, D, F, B, E |
|
顶点G是唯一剩下的顶点,它距F为11,距E为9,E最近,故高亮表示G及相应边EG。 | 无 | G | A, D, F, B, E, C |
|
现在,所有顶点均已被选取,图中绿色部分即为连通图的最小生成树。在此例中,最小生成树的权值之和为39。 | 无 | 无 | A, D, F, B, E, C, G |
3.简单证明prim算法
反证法:假设prim生成的不是最小生成树
1).设prim生成的树为G0
2).假设存在Gmin使得cost(Gmin)
3).将加入G0中可得一个环,且不是该环的最长边(这是因为∈Gmin)
4).这与prim每次生成最短边矛盾
5).故假设不成立,命题得证.
知识点:
边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权。
最小生成树(MST):权值最小的生成树。
生成树和最小生成树的应用:要连通n个城市需要n-1条边线路。可以把边上的权值解释为线路的造价。则最小生成树表示使其造价最小的生成树。
构造网的最小生成树必须解决下面两个问题:
1、尽可能选取权值小的边,但不能构成回路;
2、选取n-1条恰当的边以连通n个顶点;
MST性质:假设G=(V,E)是一个连通网,U是顶点V的一个非空子集。若(u,v)是一条具有最小权值的边,其中u∈U,v∈V-U,则必存在一棵包含边(u,v)的最小生成树。
1.prim算法
基本思想:假设G=(V,E)是连通的,TE是G上最小生成树中边的集合。算法从U={u0}(u0∈V)、TE={}开始。重复执行下列操作:
在所有u∈U,v∈V-U的边(u,v)∈E中找一条权值最小的边(u0,v0)并入集合TE中,同时v0并入U,直到V=U为止。
此时,TE中必有n-1条边,T=(V,TE)为G的最小生成树。
Prim算法的核心:始终保持TE中的边集构成一棵生成树。
注意:prim算法适合稠密图,其时间复杂度为O(n^2),其时间复杂度与边得数目无关,而kruskal算法的时间复杂度为O(eloge)跟边的数目有关,适合稀疏图。
看了上面一大段文字是不是感觉有点晕啊,为了更好理解我在这里举一个例子,示例如下:
(1)图中有6个顶点v1-v6,每条边的边权值都在图上;在进行prim算法时,我先随意选择一个顶点作为起始点,当然我们一般选择v1作为起始点,好,现在我们设U集合为当前所找到最小生成树里面的顶点,TE集合为所找到的边,现在状态如下:
U={v1}; TE={};
(2)现在查找一个顶点在U集合中,另一个顶点在V-U集合中的最小权值,如下图,在红线相交的线上找最小值。
通过图中我们可以看到边v1-v3的权值最小为1,那么将v3加入到U集合,(v1,v3)加入到TE,状态如下:
U={v1,v3}; TE={(v1,v3)};
(3)继续寻找,现在状态为U={v1,v3}; TE={(v1,v3)};在与红线相交的边上查找最小值。
我们可以找到最小的权值为(v3,v6)=4,那么我们将v6加入到U集合,并将最小边加入到TE集合,那么加入后状态如下:
U={v1,v3,v6}; TE={(v1,v3),(v3,v6)}; 如此循环一下直到找到所有顶点为止。
(4)下图像我们展示了全部的查找过程:
2.prim算法程序设计
(1)由于最小生成树包含每个顶点,那么顶点的选中与否就可以直接用一个数组来标记used[max_vertexes];(我们这里直接使用程序代码中的变量定义,这样也易于理解);当选中一个数组的时候那么就标记,现在就有一个问题,怎么来选择最小权值边,注意这里最小权值边是有限制的,边的一个顶点一定在已选顶点中,另一个顶点当然就是在未选顶点集合中了。我最初的一个想法就是穷搜了,就是在一个集合中选择一个顶点,来查找到另一个集合中的最小值,这样虽然很易于理解,但是很明显效率不是很高,在严蔚敏的《数据结构》上提供了一种比较好的方法来解决:设置两个辅助数组lowcost[max_vertexes]和closeset[max_vertexes],lowcost[max_vertexes]数组记录从U到V-U具有最小代价的边。对于每个顶点v∈V-U,closedge[v], closeset[max_vertexes]记录了该边依附的在U中的顶点。
注意:我们在考虑两个顶点无关联的时候设为一个infinity 1000000最大值。
说了这么多,感觉有点罗嗦,还是发扬原来的风格举一个例子来说明,示例如下:
过程如下表:顶点标号都比图中的小1,比如v1为0,v2为1,这里首先选择v1点。
|
Lowcost[0] |
Lowcost[1] |
Lowcost[2] |
Lowcost[3] |
Lowcost[4] |
Lowcost[5] |
U |
V-U |
closeset |
v1,infinity |
v1,6 |
v1,1 |
v1,5 |
v1,infinity |
v1,infinity |
v1 |
v1,v2,v3,v4,v5,v6 |
从这个表格可以看到依附到v1顶点的v3的Lowcost最小为1,那么选择v3,选择了之后我们必须要更新Lowcost数组的值,因为记录从U到V-U具有最小代价的边,加入之后就会改变。这里更新Lowcost和更新closeset数组可能有点难理解,
for (k=1;k
if (!used[k]&&(G[j][k]
{ lowcost[k]=G[j][k];
closeset[k]=j; }
}
j为我们已经选出来的顶点,如果G[j][k]
|
Lowcost[0] |
Lowcost[1] |
Lowcost[2] |
Lowcost[3] |
Lowcost[4] |
Lowcost[5] |
U |
V-U |
closeset |
v1,infinity |
v1,6 |
v1,1 |
v1,5 |
v3,6 |
v3,4 |
v1,v3 |
v1,v2,v4,v5,v6 |
这样一直选择下去直到选出所有的顶点。
(2)上面把查找最小权值的边结束了,但是这里有一个问题,就是我们没有存储找到的边,如果要求你输出找到的边那么这个程序就需要改进了,我们刚开始的时候选取的是v1作为第一个选择的顶点,那我们设置一个father[]数组来记录每个节点的父节点,当然v1的父节点肯定没有,那么我们设置一个结束标志为-1,每次找到一个新的节点就将它的父节点设置为他依附的节点,这样就可以准确的记录边得存储了。