题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4786
题意:
N个顶点,M条边,每条边或为白色或为黑色( 1 or 0 ),
问有没有用是斐波那契数的数目的白色边构成一棵生成树。
PS:
其实说是并查集更靠谱一点的酱紫!
首先判断整个图是否是连通的,若不连通则直接输出No。
接下来首先仅讨论白边,不要黑边,看最多能加入多少条白边,使得不存在环。这样我们得到了能加入白边的最大值max。(就是所有生成树里白边数量的最大值)。
接下来同理仅讨论黑边,这样我们可以得到可加入白边的最小值min,(也可以认为是所有生成树中白边的最小值)。
然后我们只要判断这两个值之间是否存在斐波那契数就行了。
代码如下:
#include
#include
#include
#include
using namespace std;
const int maxn = 100017;
struct node
{
int u, v;
int c;
} a[maxn];
int f[maxn], Fib[maxn];
int n, m;
int findd(int x)
{
return x==f[x] ? x : f[x]=findd(f[x]);
}
int kruskal(int sign)
{
int k = 0;
//sort(a,a+m,cmp);
for(int i = 0; i <= n; i++)
{
f[i] = i;
}
for(int i = 1; i <= m; i++)
{
if(a[i].c != sign)
{
int f1 = findd(a[i].u);
int f2 = findd(a[i].v);
if(f1 != f2)
{
f[f1] = f2;
k++;
}
}
}
return k;
}
void init()
{
Fib[0] = 1, Fib[1] = 2;
for(int i = 2; ; i++)
{
Fib[i] = Fib[i-1]+Fib[i-2];
if(Fib[i] > maxn)
break;
}
}
int main()
{
int t;
int cas = 0;
init();
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(int i = 1; i <= m; i++)
{
scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].c);
}
int ans = kruskal(2);
if(ans != n-1)//不能形成树
{
printf("Case #%d: No\n",++cas);
continue;
}
int maxx = kruskal(0);
int minn = n-1-kruskal(1);
int flag = 0;
for(int i = 0; ; i++)
{
if(Fib[i] >=minn && Fib[i]<=maxx)
{
flag = 1;
break;
}
if(Fib[i] > maxx)
{
break;
}
}
if(flag)
{
printf("Case #%d: Yes\n",++cas);
}
else
{
printf("Case #%d: No\n",++cas);
}
}
return 0;
}