2018-08-13 17:35:09
一、Partition Equal Subset Sum
问题描述:
问题求解:
二分和本质上其实是一个背包问题,就是问是否存在一种情况,使得可以填满一个sum/2的背包。
public boolean canPartition(int[] nums) {
int sum = 0;
for (int i : nums) sum += i;
if (sum % 2 != 0) return false;
sum /= 2;
boolean dp[] = new boolean[sum + 1];
dp[0] = true;
for (int num : nums) {
for (int i = sum; i >= num; i--) {
dp[i] = dp[i] || dp[i - num];
}
}
return dp[sum];
}
二、Partition to K Equal Sum Subsets
问题描述:
问题求解:
Brute Force,本质是使用组合数进行解空间的遍历。
PS.使用排列数也可以,但是效率比组合数要慢上不少。
public boolean canPartitionKSubsets(int[] nums, int k) {
int sum = 0;
for (int i = 0; i < nums.length; i++) sum += nums[i];
if (sum % k != 0) return false;
Arrays.sort(nums);
int eachSum = sum / k;
int[] visited = new int[nums.length];
return helper(nums, eachSum, 0, visited, 0, k);
}
private boolean helper(int[] nums, int eachSum, int curSum, int[] visited, int start, int k) {
if (k == 0) return true;
if (curSum > eachSum) return false;
if (curSum == eachSum) return helper(nums, eachSum, 0, visited, 0, k - 1);
for (int i = start; i < nums.length; i++) {
if (visited[i] == 1 || (i > start && nums[i] == nums[i - 1] && visited[i - 1] == 0)) continue;
visited[i] = 1;
if (helper(nums, eachSum, curSum + nums[i], visited, i + 1, k)) return true;
visited[i] = 0;
}
return false;
}
三、Matchsticks to Square
问题描述:
问题求解:
k = 4.
public boolean makesquare(int[] nums) {
if (nums.length == 0) return false;
int sum = 0;
for (int num : nums) sum += num;
if (sum % 4 != 0) return false;
int eachSum = sum / 4;
Arrays.sort(nums);
return helper(nums, eachSum, 0, new int[nums.length], 0, 4);
}
private boolean helper(int[] nums, int eachSum, int curSum, int[] visited, int start, int k) {
if (k == 0) return true;
if (curSum > eachSum) return false;
if (curSum == eachSum) return helper(nums, eachSum, 0, visited, 0, k - 1);
for (int i = start; i < nums.length; i++) {
if (visited[i] == 1 || (i > 0 && nums[i] == nums[i - 1] && visited[i - 1] == 0)) continue;
visited[i] = 1;
if (helper(nums, eachSum, curSum + nums[i], visited, i + 1, k)) return true;
visited[i] = 0;
}
return false;
}