东华大学2020年程序设计竞赛(同步赛)~~B.A Number Theoretical Problem

题目描述

Given a positive integer y and a prime p, you are asked to find an integer x such that (x×y) mod p=1. If such x exists, output any x mod p. Otherwise, output -1.
Hint: For any integer a and positive integer b, a mod b is the remainder of a dividing b. Remind that a mod b is non-negative!

输入描述:

The first line of input contains a positive integer T, which is the number of test cases. (1≤T≤200,000)
For each test case, there will be one line containing 2 positive integers y, p. (1≤y,p≤109), p is guaranteed to be a prime

输出描述:

Output one integer for each test case. If such x exists, output any x mod p. Otherwise, output -1.

输入

3
1 97
2 97
3 97

输出

1
49
65

求逆元有两种方法,第一种是费马小定理,需要判断y与p是否互质。

#include

using namespace std;
const int maxn = 1e6 + 1;

int pow_fast(int a, int n, int mod) {
    int res = 1;
    while(n) {
        if (n & 1) res = 1ll * res * a % mod;
        n >>= 1;
        a = 1ll * a * a % mod;
    }
    return res;
}

int main() {
    int T;
    cin >> T;
    while(T --) {
        int y, p;
        cin >> y >> p;
        // 需要判断 y 与 p 是否互质
        if (y % p == 0) cout << -1 << endl;
        else cout << pow_fast(y, p-2, p) << endl;
    }
    return 0;
}

第二种方法是扩展欧几里得算法,需要判断是负有解(ax + by = gcd (a, b))

#include

using namespace std;

void extend_gcd(int a, int b, int &x, int &y) {
    if (b == 0) {
        x = 1, y = 0;
        return ;
    }
    extend_gcd(b, a % b, x, y);
    int temp = x;
    x = y;
    y = temp - (a / b) * y;
}

int mod_inverse(int a, int m) {
    int x, y;
    extend_gcd(a, m, x, y);
    return (x % m + m) % m;
}

int main() {
    int T;
    cin >> T;
    while(T --) {
        int y, p;
        cin >> y >> p;
        // 判断 ax + by = gcd(a, b) 是否有解
        if (__gcd(y, p) == 1) cout << mod_inverse(y, p) << endl;
        else cout << -1 << endl;
    }
}

你可能感兴趣的:(数论)