- 深度学习相关知识--池化
已经大四了,继续努力
深度学习计算机视觉人工智能
池化概念池化分为最大池化(用的多一些)和平均池化最大池化是选出区域内最大值作为池化后的值,如下图所示:平均池化是选择区域内平均值作为池化后的值,如下图所示:概念很浅显,但是对于刚入门的人来说,很难知道池化到底能干啥,局限性是什么。池化作用:1.减少运算量,这个还好理解,因为数据量变少了,后期计算量肯定也少了2.防止过拟合,因为池化可以把一张大图变成一张小图,但是保留了重要特征,这样使得模型学习时能
- numpy 矩阵乘法_一起学习Python常用模块——numpy
weixin_39636099
numpy矩阵乘法numpy矩阵乘法python对ndarray全体除以一个数python稀疏矩阵乘法python空数组python安装numpy模块
关注微信公众号:一个数据人的自留地作者介绍知乎@王多鱼百度的一名推荐算法攻城狮。主要负责商品推荐的召回和排序模型的优化工作。1前言Python在数据科学、机器学习、AI领等域中占据主导地位,目前对于数据分析师和算法工程师来说是必备技能。对于数据分析师来说,应掌握基础语法和数据科学的模块,主要包括:pandas、numpy和机器学习库sklearn等。对于算法工程师来说,还应掌握深度学习相关模块,主
- python 对ndarray全体除以一个数_一起学习Python常用模块——numpy
weixin_39785814
python对ndarray全体除以一个数python空数组python数组全部平方
关注微信公众号:一个数据人的自留地作者介绍知乎@王多鱼百度的一名推荐算法攻城狮。主要负责商品推荐的召回和排序模型的优化工作。1前言Python在数据科学、机器学习、AI领等域中占据主导地位,目前对于数据分析师和算法工程师来说是必备技能。对于数据分析师来说,应掌握基础语法和数据科学的模块,主要包括:pandas、numpy和机器学习库sklearn等。对于算法工程师来说,还应掌握深度学习相关模块,主
- 阿里云人工智能工程师ACP认证考试:15天备考到通过经验分享
North_D
AI人工智能阿里云人工智能经验分享
阿里云人工智能工程师ACP认证考试:15天备考到通过经验分享机缘:以证促学在工作中,接触并使用深度学习相关技术已经有4、5年左右,具备一些AI相关的理论和经验。随着2023年AIGC的火热,个人的热情被带动起来,有必要系统、全面的对人工智能、机器学习、深度学习进行总结和再学习。那就设立一个可量化的学习目标吧:考个人工智能相关的认证,以证促学。踅摸了一圈,将目标确定为阿里云人工智能工程师ACP认证。
- 【深度学习】讲透深度学习第3篇:TensorFlow张量操作(代码文档已分享)
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- cs231n_深度之眼第二次作业
Jie_Cheney
图像分类数据和label分别是什么?图像分类存在的问题与挑战?图像分类数据包括训练集测试集的数据,在有监督的问题中对于训练集数据来说是有label的,而测试集是等待我们去识别它的类别,不具有label。label就是分类标签,比如cifar10这个数据集,待分类的这10类数据我们可以写成1-10,或者0-9这就叫做label。图像分类存在的问题与挑战:光照,角度,形变,遮挡。使用python加载一
- 深度学习相关软件安装与环境配置(windows版本)
欧阳颖
python机器学习神经网络深度学习pycharm
本文介绍了学习Python以及深度学习过程中常用软件的安装与环境配置。目录一.Anaconda1.1Anaconda简介1.2Anaconda安装1.3Anaconda环境配置二.安装GPU版本的PyTorch库三.安装和配置PyCharm3.1Python、PyCharm和Anaconda的关系3.2安装3.3配置一.Anaconda1.1Anaconda简介Anaconda是专门为了方便使用P
- 李沐《动手学深度学习》注意力机制
丁希希哇
李沐《动手学深度学习》学习笔记深度学习人工智能算法pytorch
系列文章李沐《动手学深度学习》预备知识张量操作及数据处理李沐《动手学深度学习》预备知识线性代数及微积分李沐《动手学深度学习》线性神经网络线性回归李沐《动手学深度学习》线性神经网络softmax回归李沐《动手学深度学习》多层感知机模型概念和代码实现李沐《动手学深度学习》多层感知机深度学习相关概念李沐《动手学深度学习》深度学习计算李沐《动手学深度学习》卷积神经网络相关基础概念李沐《动手学深度学习》卷积
- 向量,矩阵和张量的导数 | 简单的数学
橘子学AI
前段时间看过一些矩阵求导的教程,在看过的资料中,尤其喜欢斯坦福大学CS231n卷积神经网络课程中提到的Erik这篇文章。循着他的思路,可以逐步将复杂的求导过程简化、再简化,直到发现其中有规律的部分。话不多说,一起来看看吧。作者:ErikLearned-Miller翻译:橘子来源:橘子AI笔记(datawitch)本文旨在帮助您学习向量、矩阵和高阶张量(三维或三维以上的数组)的求导方法,以及如何求对
- 【深度学习】讲透深度学习第3篇:TensorFlow张量操作(代码文档已分享)
程序员一诺
python笔记人工智能深度学习深度学习tensorflow人工智能
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- 李沐《动手学深度学习》循环神经网络 经典网络模型
丁希希哇
李沐《动手学深度学习》学习笔记深度学习人工智能pytorch神经网络
系列文章李沐《动手学深度学习》预备知识张量操作及数据处理李沐《动手学深度学习》预备知识线性代数及微积分李沐《动手学深度学习》线性神经网络线性回归李沐《动手学深度学习》线性神经网络softmax回归李沐《动手学深度学习》多层感知机模型概念和代码实现李沐《动手学深度学习》多层感知机深度学习相关概念李沐《动手学深度学习》深度学习计算李沐《动手学深度学习》卷积神经网络相关基础概念李沐《动手学深度学习》卷积
- 李沐《动手学深度学习》卷积神经网络 经典网络模型
丁希希哇
李沐《动手学深度学习》学习笔记深度学习cnn神经网络算法pytorch
系列文章李沐《动手学深度学习》预备知识张量操作及数据处理李沐《动手学深度学习》预备知识线性代数及微积分李沐《动手学深度学习》线性神经网络线性回归李沐《动手学深度学习》线性神经网络softmax回归李沐《动手学深度学习》多层感知机模型概念和代码实现李沐《动手学深度学习》多层感知机深度学习相关概念李沐《动手学深度学习》深度学习计算李沐《动手学深度学习》卷积神经网络相关基础概念目录系列文章一、LeNet
- 【深度学习】从0完整讲透深度学习第2篇:TensorFlow介绍和基本操作(代码文档已分享)
程序员一诺
python笔记深度学习人工智能深度学习tensorflow人工智能
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- 机器学习、深度学习、自然语言处理基础知识总结
北航程序员小C
机器学习专栏人工智能学习专栏深度学习专栏机器学习深度学习自然语言处理
说明机器学习、深度学习、自然语言处理基础知识总结。目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。由于github的markdown解析器不支持latex,因此笔记部分需要在本地使用Typora才能正常浏览,也可以直接访问下面给出的博客链接。Document文件夹下为笔记,Code文件夹下为代码,Data文件夹下为
- 李沐《动手学深度学习》卷积神经网络 相关基础概念
丁希希哇
李沐《动手学深度学习》学习笔记深度学习cnn人工智能pytorch神经网络
系列文章李沐《动手学深度学习》预备知识张量操作及数据处理李沐《动手学深度学习》预备知识线性代数及微积分李沐《动手学深度学习》线性神经网络线性回归李沐《动手学深度学习》线性神经网络softmax回归李沐《动手学深度学习》多层感知机模型概念和代码实现李沐《动手学深度学习》多层感知机深度学习相关概念李沐《动手学深度学习》深度学习计算目录系列文章一、从全连接层到卷积(一)全连接层(二)卷积神经网络的空间不
- 李沐《动手学深度学习》深度学习计算
丁希希哇
李沐《动手学深度学习》学习笔记深度学习人工智能pytorch算法
系列文章李沐《动手学深度学习》预备知识张量操作及数据处理李沐《动手学深度学习》预备知识线性代数及微积分李沐《动手学深度学习》线性神经网络线性回归李沐《动手学深度学习》线性神经网络softmax回归李沐《动手学深度学习》多层感知机模型概念和代码实现李沐《动手学深度学习》多层感知机深度学习相关概念目录系列文章一、层和块(一)块的概念(二)块的实现二、参数管理(一)参数访问:用于调试、诊断和可视化(二)
- cs231n assignment1——SVM
柠檬山楂荷叶茶
cs231n支持向量机python机器学习
整体思路加载CIFAR-10数据集并展示部分数据数据图像归一化,减去均值(也可以再除以方差)svm_loss_naive和svm_loss_vectorized计算hinge损失,用拉格朗日法列hinge损失函数利用随机梯度下降法优化SVM在训练集和验证集计算准确率,保存最好的模型在测试集进行预测计算准确率加载展示划分数据集加载CIFAR-10数据集#LoadtherawCIFAR-10data.
- 李沐《动手学深度学习》多层感知机 深度学习相关概念
丁希希哇
李沐《动手学深度学习》学习笔记深度学习人工智能pytorch算法
系列文章李沐《动手学深度学习》预备知识张量操作及数据处理李沐《动手学深度学习》预备知识线性代数及微积分李沐《动手学深度学习》线性神经网络线性回归李沐《动手学深度学习》线性神经网络softmax回归李沐《动手学深度学习》多层感知机模型概念和代码实现目录系列文章一、模型选择、欠拟合和过拟合(一)训练误差和泛化误差(二)模型选择:验证集(三)欠拟合与过拟合二、过拟合的解决(一)权重衰减:正则化(二)暂退
- (2023版)斯坦福CS231n学习笔记:DL与CV教程 (12) | 视觉模型可视化与可解释性(Visualizing and Understanding)
女王の专属领地
计算机视觉#计算机视觉#学习笔记
前言笔记专栏:斯坦福CS231N:面向视觉识别的卷积神经网络(23)课程链接:https://www.bilibili.com/video/BV1xV411R7i5CS231n:深度学习计算机视觉(2017)中文笔记:https://zhuxiaoxia.blog.csdn.net/article/details/801551662023最新课程PPT:https://download.csdn.
- 我的深度学习日记(一):安装开发环境
是lethe先生
深度学习人工智能
我的毕设题目是深度学习相关的,之前没弄过,学的图像处理的课也学的只有皮毛,就是python学的稍微好点,这次简单的系统自学一下深度学习吧,并记录一下学习过程中的笔记,理解有误之处望大家指正~这个笔记就是安装pytorch、CUDA和CUDNN,先简单描述下,这三个玩意是干嘛的,不然咱们也不晓得为啥装它。首先就是pytorch,反正弄深度学习得用这个,导师也让咱去查,反正就是一个必须下了,具体是干嘛
- 深度学习学习杂想
Langdun
最近几日,利用晚自习、自习课时间集中深度学习相关文章,感触颇深。一般情况下,深度学习相对应的是浅层学习,他们各自相对应的具体内容可以从布鲁姆认知目标分类中获得。浅层学习,属于底层的识记和理解部分;深度学习则是有关知识的应用、分析、综合和创造部分。从十八世纪中后期工业革命以来,人类的主流经济经历着巨大的变化。前面两次工业革命,创造的是无数只需要动手的工作,因此这样环境下的教育只需要我们像工厂一样,生
- 2019-02-25~~2019-03-03 第十周周末复盘
仰望星空的小狗
一、任务清单1、刷leetcode题目(7道)2、听tensorflow,cs231n和cv课程3、技术文档输出4、恢复早起的作息二、反思1、自从年前工作非常忙,加上遇上一些郁闷的事情,导致年前到现在时间记录中断了很长一段时间。本周开始恢复时间记录,日打卡,周复盘。2、生活中不论谁,肯定会时不时遇上一些令人郁闷的事情,这些郁闷的事情很可能会打乱原本的生活节奏。但是,生活还有很长的路要走,不应该因为
- 【深度学习】从0到完整项目第1篇:深度学习第一个案例(代码文档已分享)
程序员一诺
深度学习python笔记深度学习人工智能
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- 畸变矫正-深度学习相关论文学习
六个核桃Lu
畸变矫正深度学习学习人工智能
目录DocTr:DocumentImageTransformerforGeometricUnwarpingandIlluminationCorrectionSimFIR:ASimpleFrameworkforFisheyeImageRectificationwithSelf-supervisedRepresentationLearningModel-FreeDistortionRectificat
- 训练神经网络(上)激活函数
笔写落去
深度学习神经网络人工智能深度学习
本文介绍几种激活函数,只作为个人笔记.观看视频为cs231n文章目录前言一、Sigmoid函数二、tanh函数三、ReLU函数四、LeakyReLU函数五、ELU函数六.在实际应用中寻找激活函数的做法总结前言激活函数是用来加入非线性因素的,提高神经网络对模型的表达能力,解决线性模型所不能解决的问题。一、Sigmoid函数这个函数大家应该熟悉在逻辑回归中曾用到这个sigmoid函数这个函数可以将负无
- 基于CNN神经网络的手写字符识别实验报告
全是头发的羊羊羊
机器学习深度学习神经网络cnn人工智能
作业要求具体实验内容根据实际情况自拟,可以是传统的BP神经网络,Hopfield神经网络,也可以是深度学习相关内容。数据集自选,可以是自建数据集,或MNIST,CIFAR10等公开数据集。实验报告内容包括但不限于:实验目标和动机,应明确说明输入数据,和网络输出数据;所设计相关网络的基本架构;核心架构的具体实现;网络训练和推理过程及说明;实验结果比对和分析;总结和讨论…可根据需要自行扩展评分标准:符
- 人工智能正从统计学习走向语境顺应:浅谈人工智能的三个阶段
6313dd535a24
以前,我们倾向于把人工智能看做新事物,尤其是新技术以及和深度学习相关的新技巧。然而,人工智能已经过数十年的发展,否认过往的成功似乎不合逻辑,因为技术总是不断向前发展。《人工智能的三次浪潮(ThreeWavesofAI)》,作者是DARPA信息创新办公室主管JohnLaunchbury,他从一个更长远和宽广的视角,将人工智能的历史与未来划分为了三个阶段:人工智能第一阶段:手工知识第一个阶段的典型代表
- 卷积神经网络
weixin_34283445
人工智能
https://zhuanlan.zhihu.com/p/27642620关于卷积神经网络的讲解,网上有很多精彩文章,且恐怕难以找到比斯坦福的CS231n还要全面的教程。所以这里对卷积神经网络的讲解主要是以不同的思考侧重展开,通过对卷积神经网络的分析,进一步理解神经网络变体中“因素共享”这一概念。注意:该文会跟其他的现有文章有很大的不同。读该文需要有本书前些章节作为预备知识,不然会有理解障碍。没看
- AI 论文精读,中文视频讲解:剖析人工智能本质 | 开源日报 No.120
开源服务指南
开源日报人工智能开源
mli/paper-readingStars:21.8kLicense:Apache-2.0深度学习论文精读是一个深度学习相关论文列表,包括计算机视觉、生成模型、自然语言处理等多个领域。该项目的核心优势和特点包括:提供了大量关于深度学习各领域热门文章内容对不同年份发表的有较高引用率或近期比较有意思的文章进行详尽解读涵盖了计算机视觉、生成模型、自然语言处理等多个方面,为广大研究者提供全面而专业的知识
- CS231n 作业答案
tech0ne
CS231n三次大作业:#第一次作业##原始包下载:作业一完成包地址:作业一JupyterNotebook结果:KNNSVMSoftmaxTwolayernetFeatures第二次作业原始包下载:作业二完成包地址:作业二JupyterNotebook结果:FullyConnectedNetsBatchNormalizationDropoutConvolutionalNetworksTensorf
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要