Introduction to statistical machine learning复习笔记1概率密度部分

概率密度部分

  1. 期望和峰值 当outliers很严重
    Introduction to statistical machine learning复习笔记1概率密度部分_第1张图片

  2. skewness and kurtosis
     Skewness:  E [ ( x − E [ x ] ) 3 ] ( D [ x ] ) 3  Kurtosis:  E [ ( x − E [ x ] ) 4 ] ( D [ x ] ) 4 − 3 \begin{array}{l} \text { Skewness: } \frac{E\left[(x-E[x])^{3}\right]}{(D[x])^{3}} \\ \text { Kurtosis: } \frac{E\left[(x-E[x])^{4}\right]}{(D[x])^{4}}-3 \end{array}  Skewness: (D[x])3E[(xE[x])3] Kurtosis: (D[x])4E[(xE[x])4]3
    Introduction to statistical machine learning复习笔记1概率密度部分_第2张图片

  3. Moment 生成函数
    As the limit, if the moments of all orders are specifed, the probability distribution is uniquely determined.
    M x ( t ) = E [ e t x ] = { ∑ x e t x f ( x )  (Discrete)  ∫ e t x f ( x ) d x  (Continuous)  M_{x}(t)=E\left[e^{t x}\right]=\left\{\begin{array}{ll} \sum_{x} e^{t x} f(x) & \text { (Discrete) } \\ \int e^{t x} f(x) \mathrm{d} x & \text { (Continuous) } \end{array}\right. Mx(t)=E[etx]={xetxf(x)etxf(x)dx (Discrete)  (Continuous) 
    e t x = 1 + ( t x ) + ( t x ) 2 2 ! + ( t x ) 3 3 ! + ⋯ e^{t x}=1+(t x)+\frac{(t x)^{2}}{2 !}+\frac{(t x)^{3}}{3 !}+\cdots etx=1+(tx)+2!(tx)2+3!(tx)3+
    E [ e t x ] = M x ( t ) = 1 + t μ 1 + t 2 μ 2 2 ! + t 3 μ 3 3 ! + ⋯ E\left[e^{t x}\right]=M_{x}(t)=1+t \mu_{1}+t^{2} \frac{\mu_{2}}{2 !}+t^{3} \frac{\mu_{3}}{3 !}+\cdots E[etx]=Mx(t)=1+tμ1+t22!μ2+t33!μ3+
    M x ′ ( t ) = μ 1 + μ 2 t + μ 3 2 ! t 2 + μ 4 3 ! t 3 + ⋯ M x ′ ′ ( t ) = μ 2 + μ 3 t + μ 4 2 ! t 2 + μ 5 3 ! t 3 + ⋯ ⋮ M x ( k ) ( t ) = μ k + μ k + 1 t + μ k + 2 2 ! t 2 + μ k + 3 3 ! t 3 + ⋯ \begin{aligned} M_{x}^{\prime}(t) &=\mu_{1}+\mu_{2} t+\frac{\mu_{3}}{2 !} t^{2}+\frac{\mu_{4}}{3 !} t^{3}+\cdots \\ M_{x}^{\prime \prime}(t) &=\mu_{2}+\mu_{3} t+\frac{\mu_{4}}{2 !} t^{2}+\frac{\mu_{5}}{3 !} t^{3}+\cdots \\ & \vdots \\ M_{x}^{(k)}(t) &=\mu_{k}+\mu_{k+1} t+\frac{\mu_{k+2}}{2 !} t^{2}+\frac{\mu_{k+3}}{3 !} t^{3}+\cdots \end{aligned} Mx(t)Mx(t)Mx(k)(t)=μ1+μ2t+2!μ3t2+3!μ4t3+=μ2+μ3t+2!μ4t2+3!μ5t3+=μk+μk+1t+2!μk+2t2+3!μk+3t3+

  4. 分布的特征方程
    是概率密度的傅里叶变换
    φ x ( t ) = M i x ( t ) = M x ( i t ) \varphi_{x}(t)=M_{i x}(t)=M_{x}(i t) φx(t)=Mix(t)=Mx(it)

  5. TRANSFORMATION OF RANDOM VARIABLES
    要乘上雅克比行列式:
    Integration of function f ( x ) f(x) f(x) over X \mathcal{X} X can be expressed by using function g ( r ) g(r) g(r) on R \mathcal{R} R such that
    x = g ( r )  and  X = g ( R ) x=g(r) \text { and } X=g(\mathcal{R}) x=g(r) and X=g(R)
    as
    ∫ X f ( x ) d x = ∫ R f ( g ( r ) ) ∣ d x d r ∣ d r \int_{\mathcal{X}} f(x) \mathrm{d} x=\int_{\mathcal{R}} f(g(r))\left|\frac{\mathrm{d} x}{\mathrm{d} r}\right| \mathrm{d} r Xf(x)dx=Rf(g(r))drdxdr

  6. 伽马分布 指数分布
    f ( x ) = λ α Γ ( α ) x α − 1 e − λ x  for  x ≥ 0 f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} \quad \text { for } x \geq 0 f(x)=Γ(α)λαxα1eλx for x0
    f ( x ) = λ e − λ x f(x)=\lambda e^{-\lambda x} f(x)=λeλx

  7. beta分布
    当x和y为正整数时,x + y−1个随机变量中独立服从连续均匀分布的第x个最小值(或者说第y个最大值)U(0,1)服从beta分布。

  8. 拉普拉斯分布
    两个指数分布之差服从的分布。
    f ( x ) = 1 2 b exp ⁡ ( − ∣ x − a ∣ b ) f(x)=\frac{1}{2 b} \exp \left(-\frac{|x-a|}{b}\right) f(x)=2b1exp(bxa)
    也叫双指数分布

柯西分布和拉普拉斯分布经常用来搞有outliers的数据

你可能感兴趣的:(读书笔记)