- 探索React的深度应用:React Survey——构建问卷神器
傅尉艺Maggie
探索React的深度应用:ReactSurvey——构建问卷神器去发现同类优质开源项目:https://gitcode.com/在浩瀚的前端开发世界里,React与Redux已成为构建复杂Web应用的得力助手,但它们的强大往往隐藏在基础教程之后。今天,让我们一同探索【ReactSurvey】,一个将React与Redux之力发挥至极致的开源项目,教你如何轻松打造专业的在线问卷系统。项目介绍Reac
- 月之暗面改进并开源了 Muon 优化算法,对行业有哪些影响?
互联网之路.
知识点开源算法
互联网各领域资料分享专区(不定期更新):Sheet正文月之暗面团队改进并开源的Muon优化算法在深度学习和大模型训练领域引发了广泛关注,其核心创新在于显著降低算力需求(相比AdamW减少48%的FLOPs)并提升训练效率,同时通过开源推动技术生态的共建。1.显著降低大模型训练成本,推动技术普惠算力需求锐减:Muon通过引入权重衰减和一致的RMS更新,解决了原始Muon在大规模训练中的稳定性问题,使
- 深度解析:大模型开源的真与假
rs勿忘初心
#AI大模型大模型开源闭源对比开源闭源区别
目录大模型企业开闭源策略各异开源大模型的定义与现状开源内容的局限性通常开放的内容实际未开放的关键内容法律与商业模式的约束开源许可证的重要性大模型的定制许可证及其限制性条款商业公司对开源大模型的策略和目的建立生态系统吸引开发者提升品牌形象保持竞争优势技术创新和改进技术与协助开发的挑战训练和推理过程的资源需求差异微调和衍生模型的技术实现及其局限性开源大模型在协作开发中的局限总结大模型的发展开启了AIG
- 开源界的5 大开源许可协议
tboqi1
电脑使用
越来越多的开发者与设计者希望将自己的产品开源,以便其他人可以在他们的代码基础上做更多事,开源社区也因此充满生机。在我们所能想到的应用领域,都有开源软件存在(象WordPress,Drupal这些开源CMS)。然而很多人对开源许可并不了解,本文介绍开源领域常用的几种许可协议以及它们之间的区别。什么是许可协议?什么是许可,当你为你的产品签发许可,你是在出让自己的权利,不过,你仍然拥有版权和专利(如果申
- Wireshark详解
靖节先生
wireshark测试工具网络
Wireshark使用详解1.Wireshark简介2.下载与安装1.下载地址2.安装步骤(以Windows为例)3.界面与核心功能1.主界面布局2.常用菜单功能4.过滤功能详解1.过滤类型2.常用过滤命令5.过滤命令与网络结构对应6.使用注意事项7.案例分析TCP三次握手1.实验目标2.操作步骤3.预期结果8.扩展学习1.Wireshark简介Wireshark是一款开源的网络协议分析工具,支持
- 【C++】探索Vector:灵活的数据存储解决方案
星霜旅人
C++c++
什么都无法舍弃的人,什么也改变不了。前言这是我自己学习C++的第六篇博客总结。后期我会继续把C++学习笔记开源至博客上。上一期笔记是关于C++的string类知识,没看的同学可以过去看看:【C++】代码森林中的STL宝藏工具箱---string类_c++工具箱-CSDN博客https://blog.csdn.net/hsy1603914691/article/details/143967928?s
- 【云原生】Docker搭建知识库文档协作平台Confluence
逆风飞翔的小叔
运维ConfluenceConfluence搭建Confluence使用Confluence搭建与使用Confluence使用详解
目录一、前言二、企业级知识库文档工具部署形式2.1开源工具平台2.1.1开源工具优点2.1.2开源工具缺点2.2私有化部署2.3混合部署三、如何选择合适的知识库平台工具3.1明确目标和需求3.2选择合适的知识库平台工具四、Confluence介绍4.2confluence特点4.3Confluence中的几个概念4.3.1空间(Space)4.3.2Dashboard4.3.3页面(Page)4.
- OpenCV开源机器视觉软件
视觉人机器视觉
杂说opencv开源人工智能
OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉和机器学习软件库,广泛应用于实时图像处理、视频分析、物体检测、人脸识别等领域。它由英特尔实验室于1999年发起,现已成为计算机视觉领域最流行的工具之一,支持多种编程语言(如C++、Python、Java)和操作系统(Windows、Linux、macOS、Android、iOS)。核心功能图像处理基
- DeepSeek开源周第二弹:DeepEP如何用RDMA+FP8让MoE模型飞起来?
曦紫沐
大模型deepseek
一、引言:MoE模型的通信瓶颈与DeepEP的诞生在混合专家(MoE)模型训练中,专家间的全对全(All-to-All)通信成为性能瓶颈。传统方案在跨节点传输时带宽利用率不足50%,延迟高达300μs以上。DeepSeek推出的DeepEP作为首个开源EP通信库,通过软硬件协同优化,将节点内通信带宽压榨至158GB/s(接近NVLink极限),跨节点RDMA延迟降至46GB/s,成为大模型训练/推
- 镜像解决,向量数据库Milvus报错
zwzscnds
dockermilvus
MilvusMilvus是一款开源的向量数据库,具有高度的灵活性、稳定可靠性以及高速查询等特点。它支持针对TB级向量的增删改操作和近实时查询,适用于大规模向量数据的存储和检索。Milvus的官网:https://milvus.ioGithub上Milvus的链接:https://github.com/milvus-ioDockerDocker是一种容器化技术,它允许开发者将应用程序及其依赖项打包到
- 2025 MENC加密系统源码 V2.4.0
会说源码
数据库
MENC加密系统V2.4.0更新日志本次更新全面优化功能与性能,为您提供更加高效、安全的加密服务体验:此版本为无限加密授权版本,可修改数据库进行数据更改,功能正常使用,后门未详仅用于测试未对授权进行破解。1.新增SQL一键备份功能数据备份更高效,操作更便捷,显著提升管理体验。使用方法:访问站点域名/sql/backup?key=密钥,密钥可在系统目录根目录的.env文件中设置。备份文件默认存储在系
- 向量数据库milvus部署
一方有点方
milvus
官方文档MilvusvectordatabasedocumentationRunMilvusinDocker(Linux)|MilvusDocumentationMilvusvectordatabasedocumentation按部署比较简单,这里说一下遇到的问题一:DockerCompose方式部署1、镜像无法拉取,(docker.io被禁)只能获取以下镜像,image:quay.io/core
- 使用LangChain与GPT4All模型进行交互
bavDHAUO
langchain交互python
技术背景介绍近年来,开源模型和框架在AI技术领域迅猛发展。GPT4All是一个开源的对话机器人生态系统,旨在为用户提供干净的助手数据,包括代码、故事和对话。这篇文章将介绍如何使用LangChain与GPT4All模型进行交互,以实现智能问答功能。核心原理解析GPT4All是基于大型语言模型(LLMs)的开源项目,通过训练大量干净的数据,能够生成高质量的对话和回答。LangChain是一种用于简化与
- 阿里重磅模型深夜开源;DeepSeek宣布开源DeepGEMM;微软开源多模态AI Agent基础模型Magma...|网易数智日报
网易数智
网易数智日报开源人工智能大数据业界资讯aiAIGC
阿里重磅模型深夜开源:表现超越Sora、Pika,消费级显卡就能跑2月26日,25日深夜阿里云视频生成大模型万相2.1(Wan)正式宣布开源,此次开源采用Apache2.0协议,14B和1.3B两个参数规格的全部推理代码和权重全部开源,同时支持文生视频和图生视频任务。据阿里云官方介绍,14B版本万相模型在指令遵循、复杂运动生成、物理建模、文字视频生成等方面表现突出,在权威评测集Vbench中,万相
- 深度学习模型优化与医疗诊断应用突破
智能计算研究中心
其他
内容概要近年来,深度学习技术的迭代演进正在重塑医疗诊断领域的实践范式。随着PyTorch与TensorFlow等开源框架的持续优化,模型开发效率显著提升,为医疗场景下的复杂数据处理提供了技术基座。当前研究聚焦于迁移学习与模型压缩算法的协同创新,通过复用预训练模型的泛化能力与降低计算负载,有效解决了医疗数据样本稀缺与硬件资源受限的痛点问题。与此同时,自适应学习机制通过动态调整网络参数更新策略,在病理
- BagelDB:AI的开源向量数据库
qahaj
人工智能数据库python
BagelDB:AI的开源向量数据库BagelDB(OpenVectorDatabaseforAI)是一个类似于GitHub的AI数据协作平台。用户可以在这里创建、分享和管理向量数据集。BagelDB支持独立开发者的私有项目、企业内部的协作以及数据DAO的公共贡献。技术背景介绍随着人工智能和机器学习的快速发展,各种数据的重要性也在不断凸显。向量数据库作为存储向量化数据的重要工具,越来越受到开发者和
- 使用Hugging Face Text Embeddings Inference进行文本嵌入推理
dgay_hua
python
在自然语言处理中,文本嵌入是一个重要的技术,它将文本转换为可以由机器学习算法处理的数字向量。在这篇文章中,我们将探讨如何使用HuggingFace的TextEmbeddingsInference(TEI)工具包来部署和服务开源文本嵌入和序列分类模型。TEI支持高性能提取,包括常用的嵌入模型如FlagEmbedding、Ember、GTE和E5。技术背景介绍文本嵌入在现代NLP任务中起着关键作用,它
- Deepseek开源周第四天:从 DualPipe 到 EPLB
deepseek开源
Deepseek开源周第四天:从DualPipe到EPLB前言上周deepseek宣布,将在本周陆续发布五个开源项目,这些库已经在生产环境中经过了记录、部署和实战测试。今天是deepseek开源周的第四天,deepseek发布了三个开源项目,分别是GitHub-deepseek-ai/DualPipeGitHub-deepseek-ai/eplbGitHub-deepseek-ai/profile
- RabbitMQ实战:构建可靠的异步消息系统
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
RabbitMQ实战:构建可靠的异步消息系统1.背景介绍1.1异步消息系统的重要性在现代软件系统中,各个组件和服务之间通常需要进行大量的通信和数据交换。同步通信会导致系统耦合度高,可扩展性差。异步消息系统应运而生,通过将消息发送者和接收者解耦,提高了系统的灵活性、可靠性和性能。1.2RabbitMQ的优势RabbitMQ是一个开源的消息队列系统,基于AMQP(AdvancedMessageQueu
- 通过vLLM部署LLM模型到生产环境中
MichaelIp
人工智能实验室大语言模型人工智能pythonAIGC自然语言处理语言模型promptllama
文章目录1使用vLLM部署模型2部署过程2.1准备GPU环境2.2安装vLLM依赖项3使用vLLM部署模型并启动服务3.1部署开源模型3.2部署微调模型4测试服务是否正常运行5评估服务性能1使用vLLM部署模型本地部署模型主要包含下载模型、编写模型加载代码和发布为支持API访问的应用服务这三个步骤。这个过程通常伴随较高的人工部署成本,vLLM可以用来简化这一流程。它是一个专为大模型推理设计的开源框
- 分布式服务监控
点滴~
分布式
目录分布式服务监控CAT(CentralApplicationTracking)监控对象和指标分布式服务监控分布式服务监控在保障分布式系统稳定运行中至关重要,通过各类监控组件对关键指标进行监测,能及时发现并解决问题。下面将从监控组件、其优缺点、监控指标及其作用展开介绍。监控组件Prometheus:一个开源的系统监控和报警工具包。它采用拉取式采集数据,支持多种数据采集方式,如直接采集应用程序暴露的
- 一款色彩绚丽的个人主页源码
酷爱码
htmlHTML
源码介绍一款色彩绚丽的个人主页源码,源码由HTML+CSS+JS组成,记事本打开源码文件可以进行内容文字之类的修改,双击html文件可以本地运行效果效果预览源码获取一款色彩绚丽的个人主页源码
- UnionLLM——通过统一接口调用国内外所有LLM的Python开源工具包
everfly
pythongithub
最近忙里偷闲和公司前端小伙伴一起撸了一个Python开源项目——UnionLLM。这是一个通过与OpenAI兼容的统一方式调用各种国内外各种大语言模型和Agent编排工具的轻量级开源工具包。我们开发它的起因是因为在实际项目中,经常需要调用多个大语言模型的API,但是国内每个大语言模型的接口和参数都不一样,这给我们的工作带来了很大的困扰和额外的成本。UnionLLM的目标是通过统一且容易扩展的方式连
- 技术分享| 分布式系统中服务注册发现组件的原理及比较
anyRTC
音视频分布式系统音视频分布式系统ConsulZookeeperetcd
背景在分布式架构的系统中,服务发现简单来讲就是通过服务名找到提供服务的实例地址和端口,主要用于解决如何获取服务实例地址问题。随着容器技术的兴起,服务集群部署在系统各处,服务之间的远程调用都需要通过服务发现来实现。服务注册发现是分布式系统中不可或缺的关键组件,常用于构建服务注册发现解决方案的开源框架如ZooKeeper、Etcd、Consul。下面主要介绍一下如何基于ZooKeeper、Etcd、C
- LakeSoul 国产湖仓框架新篇章:开源基金会孵化,国产信创认证,新版本重磅发布
元灵数智
开源人工智能语言模型gpt-3chatgpt大数据
LakeSoul作为国产自研开源湖仓框架,具备湖仓一体、流批一体、BI/AI一体等核心设计理念和实现,在并发读写和IO性能等方面有着显著的优势。近期,LakeSoul项目又有了多项重要的新进展:LakeSoul开源项目正式捐赠进入Linux基金会孵化,成功通过了国产信创认证,并发布了2.3.0全新版本。这也标志着LakeSoul项目的发展进入了一个新的阶段,本文将为您一一解读。LakeSoul项目
- 国产唯一开源湖仓框架LakeSoul 2.0 重磅升级:支持快照回滚、Flink和Hive对接
元灵数智
大数据数据库spark
首先,附上Github链接LakeSoul:https://github.com/meta-soul/LakeSoul,可搜索公众号元灵数智,在底部菜单了解我们-用户交流获取官方技术交流群二维码,进群与业内大佬进行技术交流。DMetaSoul团队于7月初发布了LakeSoul2.0版本,对1.0版本进行了多方面升级优化,提高了自身架构设计的灵活性,也更好地适应客户未来业务高速发展的需要。2.0版本
- 使用 LakeSoul 构建实时机器学习样本库
元灵数智
bigdata大数据数据仓库数据库架构数据库开发
首先,附上Github链接LakeSoul:https://github.com/meta-soul/LakeSoul,可搜索公众号元灵数智,在底部菜单了解我们-用户交流获取官方技术交流群二维码,进群与业内大佬进行技术交流。在之前的公众号文章《重磅!开源湖仓平台LakeSoul设计理念详解》中,我们介绍了LakeSoul开源流批一体表存储框架的设计理念和部分实现原理。LakeSoul设计的初衷,是
- python dag调度系统开发_基于DAG的分布式任务调度平台-Maat
weixin_39634997
pythondag调度系统开发
背景什么是MaatMaat是一个基于开源项目Airflow的流程调度系统,它支持用户自定义地组装流程节点,流程可以在用户指定的时间触发(支持crontab格式),或由用户手动触发。Maat的所有节点分布式地运行在Hippo上,由Drogo调度。用户可以创建自己的调度节点和执行节点,达到资源隔离的目的。用户可以通过配置的方式安装自己执行节点的运行环境,也可以配置执行节点的副本数。下图展示了一个任务的
- 在 Ubuntu 22.04 上搭建 Dify 应用的完整指南
jdfklaakjsdf
AIGCubuntulinux运维
Dify是一款开源的AI应用开发平台,支持快速构建基于大语言模型(如GPT-3、ChatGLM等)的应用。本教程将详细演示如何在Ubuntu22.04系统上部署Dify。一、环境准备1.系统要求Ubuntu22.04LTS最低配置:2核CPU/4GB内存/20GB硬盘推荐配置:4核CPU/8GB内存/40GB硬盘2.更新系统sudoaptupdate&&sudoaptupgrade-ysudoap
- 【地图视界-Leaflet1】快速搭建你的第一个地图
Anchenry
GIS可视化#地图视界前端html信息可视化
引言随着Web技术的飞速发展,交互式地图已经成为网站不可或缺的一部分。无论是位置定位、数据可视化,还是复杂的空间分析,地图应用都在现代互联网应用中占据着重要地位。而Leaflet作为一款轻量级、开源的JavaScript库,凭借其极简的设计、高效的性能和易于上手的特性,成为了开发交互式地图应用的首选工具之一。本文将通过详细介绍Leaflet的使用,帮助你从零基础开始,逐步构建出自己的地图应用。什么
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f