- 【机器学习理论基础】一文看尽朴素贝叶斯算法
大数据AI
MachineLearning机器学习
在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同。对于大多数的分类算法,比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数Y=f(X)Y=f(X)Y=f(X),要么是条件分布P(Y∣X)P(Y|X)P(Y∣X)。但是朴素贝叶斯却是生成方法,也就是直接找出特征输出YYY和特征XXX的联合分布P(X,Y)P(X
- 【机器学习第十二章——计算学习理论】
方寸星河yu
机器学习人工智能
机器学习第十二章——计算学习理论12.计算学习理论12.1基础知识12.1可能学习近似正确假设(PAC)12.3有限假设空间12.4VC维12.计算学习理论12.1基础知识从理论上刻画了若干类型的机器学习问题中的困难和若干类型的机器学习算法的能力这个理论要回答的问题是:在什么样的条件下成功的学习是可能的?在什么条件下某个特定的学习算法可保证成功运行?机器学习理论的一些问题:是否可能独立于学习算法确
- 一篇文章预览数据挖掘比赛入门
MycountryMyhome
很多学习机器学习的同学来参加数据挖掘比赛,发现数据挖掘比赛和自己学过的机器学习理论完全不一致.所以,我决定写一篇入门文章给那些新人。必须掌握的库scikit-learnscipyseabornmatplotlibpandasHyperopt特征分类:连续数字特征序数特征类别特征时间特征坐标特征文本特征序数特征:定义为无限循环有限个数字。比如某一列只有123类别特征:类别特征和序数特征相似只不过表现
- [笔记]机器学习之机器学习理论及案例分析《二》 聚类
二进制怪兽
人工智障聚类机器学习算法
#21天学习挑战赛—机器学习#活动地址:CSDN21天学习挑战赛文章目录前言聚类聚类定义什么是簇聚类分类离群点聚类算法实例K-Means算法(k-均值算法)寻找质心最佳位置关于均值关于距离函数维度灾难定义产生的问题解决办法总结前言聚类聚类是在无标记样本的条件下将数据进行分组,从而发现天然的结构。聚类是无监督学习的主要任务,分类是监督学习的主要任务。聚类主要应用在:发现数据的潜在结构对数据进行自然分
- Python数据分析的入门路线
皮皮大
最近发现了一个自学Python数据分析的好地方,这里的原创文章高达200+篇,大家一起来看看,可以关注学习起来喔❤️公众号的原创文章涉及:Python数据分析、爬虫、机器学习、kaggle案例分享、MySQL、可视化等,下面是部分原创文章:一、机器学习+kaggle案例机器学习和数据分析案例分享是尤而小屋的核心内容,主要包含机器学习理论+kaggle比赛+数据分析的分享:机器学习(1)部分关于机器
- 【机器学习理论】2023 Spring 期中考试 CSCI5030 Midterm
叼辣条闯天涯
机器学习理论机器学习人工智能
Date&Time:16/03/2023,12:30-2:00pmQuestion1(True/False,20Points):Forthisquestion,youneedtoanswerwhichofthefollowingstatementsaretrueandwhichonesarefalse.Youalsoneedtoprovideashortexplanationforyourtrue
- 【机器学习理论】2023 Spring Homework 1
叼辣条闯天涯
机器学习理论机器学习概率论人工智能
PleaselogintoGradescopeviayourCUHKaccountandusetheentrycode:6ZWGYDProblem1(GaussianDistributionasanExponentialFamily):WeshowedGaussiandistributionN(μ,σ2)\mathcal{N}\left(\mu,\sigma^{2}\right)N
- 【机器学习理论】人工神经网络之神经元的MP模型
Li Yuexi
机器学习理论神经网络人工智能机器学习人工智能神经网络
神经元的MP模型1神经元的生理结构2神经元的数学模型2.1从生理结构到MP模型的构建过程2.2MP模型的直观图示2.3MP模型的标准形式2.4MP模型的向量形式2.5小结3MP模型的加权求和的数学意义4总结人工神经网络是人工智能仿生学派的一大创造,人工神经网络的诞生极大地受到人体内的真实的神经元的生理结构的启发,并且最初的神经元的数学模型就是仿照真实的神经元的结构来设计的,所以在介绍神经元的MP模
- 【机器学习理论】2023 Spring 期末考试 CSCI5030 Finalterm
叼辣条闯天涯
机器学习理论机器学习人工智能
CSCI5030:FinalSolutionsDate&Time:May4,2:00-4:00pmQuestion1(True/False,20Points):Forthisquestion,youneedtoanswerwhichofthefollowingstatementsaretrueandwhichonesarefalse.Youalsoneedtoprovideashortexplan
- 适合进阶学习的 机器学习 开源项目(可快速下载)
GitCode官方
开源项目学习机器学习开源
目录开源项目合集[>>开源的机器学习平台:mlflow/mlflow](https://gitcode.com/mlflow/mlflow)[>>机器学习路线图:mrdbourke/machine-learning-roadmap](https://gitcode.com/mrdbourke/machine-learning-roadmap)[>>机器学习理论和实践的合集:ben1234560/A
- 2020-07-23计算学习理论
BOLDRainbow
1.章节主要内容机器学习理论(computationallearningtheory)研究的是关于通过“计算”来进行“学习”的理论,即关于机器学习的理论基础,其目的是分析学习任务的困难本质,为学习算法提供理论保证,并根据分析结果指导算法设计。这章内容相对比较抽象,它关注的更多是算法能产生的数据与结果之间的映射与实际映射的贴近程度和稳定程度,而不是具体的算法的优劣。这是一个在更高层面审视机器学习算法
- Python数据挖掘与机器学习实践技术应用
思考的小猴子
机器学习python数据挖掘机器学习
近年来,Python编程语言受到越来越多科研人员的喜爱,在多个编程语言排行榜中持续夺冠。同时,伴随着深度学习的快速发展,人工智能技术在各个领域中的应用越来越广泛。机器学习是人工智能的基础,因此,掌握常用机器学习算法的工作原理,并能够熟练运用Python建立实际的机器学习模型,是开展人工智能相关研究的前提和基础。为各领域人员量身定制课程内容,让你畅学Python编程及机器学习理论与代码实现方法,从“
- 初步认识cortex(CTXC)
hp_6482
一、资料1、白皮书(EN)http://www.cortexlabs.ai/Cortex_AI_on_Blockchain_EN.pdf2、官方网站(EN)http://www.cortexlabs.ai/3、团队+顾问CEO——陈子祺,清华大学、卡耐基梅隆大学、加州大学圣克鲁斯分校学习。在早期的学习经历中,师从DavidP.Helmbold研究机器学习理论和各种算法应用,精通共识算法和共有链生态
- 8.1 有监督学习算法
adamlay
大课笔记——数据分析
有监督学习算法0.机器学习理论基础根据酒精浓度、颜色深度判断红酒类别常用机器学习算法体系有监督学习无监督学习半监督学习强化学习输入/输出空间、特征空间过拟合与欠拟合1.KNN/K近邻算法1.1算法原理1.2算法的优缺点1.3算法的变种1.4Python代码实现1.5SCIKIT-LEARN算法库实现主要设计原则:案例1.6选择最优K值绘制学习曲线1.7交叉验证1.7.1泛化能力1.7.2K折交叉验
- 对偶理论:基本概念札记
三翼鸟数字化技术团队
人工智能机器学习算法
1.前言在读论文或者学习机器学习理论时,常常看到对偶的身影。但因为对对偶问题的理解不够透彻,在看机器学习理论相关理论时也是懵懵懂懂。所以本文整理了对偶理论的基本概念,帮助理解记忆。本文主要描述:优化问题的标准形式,即原问题的基本定义;介绍Lagragian函数,Lagrage对偶函数/对偶函数,Lagrage对偶问题/对偶问题等基本概念;介绍将原问题转化为对偶问题的方法。优化问题的标准形式(原问题
- 一、大数据与机器学习-概述-笔记
火蓝棋
大数据机器学习-笔记
一、什么是机器学习?机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。二、机器学习应用场景举例1.Gam
- TensorFlow03-实现线性回归
__流云
deftest01_liner():#用numpy生成100个点x_data=np.random.rand(100)y_data=x_data*0.1+0.2#构造一个线程模型#k:斜率;b:偏置值b=tf.Variable(0.)k=tf.Variable(0.)y=k*x_data+b#定义二次方差损失函数,用于优化计算结果,机器学习理论部分#求得预测值和实际值的平方差,用于判断计算结果的损失
- 机器学习和python学习之路吐血整理技术书从入门到进阶(珍藏版)
rocling
人工智能人工智能
极客侠网站导航(全部书单资源导航页):https://pymlovelyq.github.io/archives/“机器学习/深度学习并不需要很多数学基础!”也许你在不同的地方听过不少类似这样的说法。对于鼓励数学基础不好的同学入坑机器学习来说,这句话是挺不错的。不过,机器学习理论是与统计学、概率论、计算机科学、算法等方面交叉的领域,对这些技术有一个全面的数学理解对理解算法的内部工作机制、获取好的结
- 001、torch笔记
Here we are——wxl
torch笔记
之——开始目录之——开始初衷杂谈正文1.大致框架2.数据操作基础2.1数组2.2广播机制2.4不常用的原地内存操作2.5numpy与tensor相互转换所属专栏会不断更新初衷学而时习之,太多东西来得杂乱,不用就忘,浅记一下,一些小的心得和想法杂谈2023.10.3,笑死是生日不过新的一年开始也很不错本科阶段学了很多模式识别机器学习理论,多部署少研究和编写,现在刚开始系统化动手。用上了jupyter
- 基于支持向量机 (SVM) 和稀疏表示理论 (SRC) 的人脸识别比较
西部小狼_
一背景1.1支持向量机简介支持向量机(SupportVectorMachine,SVM)是AT&TBell实验室的V.Vapnik等人提出的一种机器学习算法,是迄今为止最重要的机器学习理论和方法之一,也是应用最广泛、综合效果最好的模式分类技术之一。到目前为止,支持向量机已应用于孤立手写字符识别、网页或文本自动分类、说话人识别、人脸检测、性别分类、计算机入侵检测、基因分类、遥感图象分析、目标识别、函
- python 知乎 sklearn_sklearn:Python语言开发的通用机器学习库
weixin_39723678
python知乎sklearn
深入理解机器学习并完全看懂sklearn文档,需要较深厚的理论基础。但是,要将sklearn应用于实际的项目中,只需要对机器学习理论有一个基本的掌握,就可以直接调用其API来完成各种机器学习问题。sklearn介绍scikit-learn是Python语言开发的机器学习库,一般简称为sklearn,目前算是通用机器学习算法库中实现得比较完善的库了。其完善之处不仅在于实现的算法多,还包括大量详尽的文
- 近期微软重大论文----《通用人工智能的火花:GPT-4的早期实验》
小林猿~
chatgpt人工智能深度学习microsoftpythonstablediffusion
这篇论文是最近讨论度极高的一篇论文,推特上几乎被这篇论文刷屏,作者SebastienBubeck是微软机器学习基础组的研究经理。他本人之前的研究主要集中在机器学习理论,凸优化,对抗鲁棒性方法,下面是该大佬的个人主页:虽然作者是做理论ML出身,但是这篇论文中却没有利用机器学习的方法来对GPT-4进行分析,而是从心理学,哲学的角度出发来探讨评估GPT-4的智能。我个人认为这篇论文会是今年最重要的论文之
- 机器学习中为什么需要梯度下降_机器学习理论(四)线性回归中的梯度下降法...
weixin_39607423
机器学习中为什么需要梯度下降线性分组码的最小汉明距为6线性回归梯度下降法python
(小小:机器学习的经典算法与应用)(小小:机器学习理论(一)KNN-k近邻算法)(小小:机器学习理论(二)简单线性回归)(小小:机器学习理论(三)多元线性回归)(小小:机器学习理论(四)线性回归中的梯度下降法)(小小:机器学习理论(五)主成分分析法)(小小:机器学习理论(六)多项式回归)(小小:机器学习理论(七)模型泛化)(小小:机器学习理论(八)逻辑回归)(小小:机器学习理论(九)分类算法的评价
- Robocup 仿真2D 学习笔记(一) ubuntu16.04 搭建 robocup 仿真2D环境
markchalse
robocup2Drobocup仿真2Dubuntu16环境搭建
前言robocup2D是一个仿真机器人足球比赛,也是一个研究多智能体强化学习等机器学习理论算法的优秀平台,在接下来的一段时间,通过学习如何在robocup2D仿真比赛中运用机器学习算法,提高一个球队底层的实力。本文将在ubuntu16.04系统中搭建robcup2D开发环境,因为手中只有15版本的开发环境,但是在安装中与在ubuntu12.04的环境搭建过程有一些不同。本文介绍的搭建过程比较粗略,
- 量化:基于支持向量机的择时策略
无名J0kзr
量化支持向量机算法机器学习
文章目录参考机器学习简介策略简介SVM简介整体流程收集数据准备数据建立模型训练模型测试模型调节参数参考Python机器学习算法与量化交易利用机器学习模型,构建量化择时策略机器学习简介机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也
- 机器学习理论笔记(二):数据集划分以及模型选择
蓝色是天
蓝色是天的机器学习笔记机器学习笔记人工智能数据集验证数据集
文章目录1前言2经验误差与过拟合3训练集与测试集的划分方法3.1留出法(Hold-out)3.2交叉验证法(CrossValidation)3.3自助法(Bootstrap)4调参与最终模型5结语1前言欢迎来到蓝色是天的机器学习笔记专栏!在上一篇文章《机器学习理论笔记(一):初识机器学习》中,我们初步了解了机器学习,并探讨了其定义、分类以及基本术语。作为继续学习机器学习的进一步之旅,今天我们将进一
- 机器学习里面数学知识,到底对数学水平要求多高?
yoku酱
过去几个月里,有不少人联系我,向我表达他们对数据科学、对利用机器学习技术探索统计规律性,开发数据驱动的产品的热情。但是,我发现他们中有些人实际上缺少为了获取有用结果的必要的数学直觉和框架。这是我写这篇文章的主要原因。最近,许多好用的机器和深度学习软件变得十分易得,例如scikit-learn,Weka,Tensorflow,等等。机器学习理论是与统计学、概率论、计算机科学、算法等方面交叉的领域,它
- 机器学习理论笔记(一):初识机器学习
蓝色是天
蓝色是天的机器学习笔记机器学习笔记人工智能NFL西瓜书
文章目录1前言:蓝色是天的机器学习笔记专栏1.1专栏初衷与定位1.2本文主要内容2机器学习的定义2.1机器学习的本质2.2机器学习的分类3机器学习的基本术语4探索"没有免费的午餐"定理(NFL)5结语1前言:蓝色是天的机器学习笔记专栏尊敬的读者们,大家好!欢迎来到我的全新专栏:《蓝色是天的机器学习笔记》。我感到无比兴奋,能够在这里与各位分享我对机器学习的热爱与探索。这个专栏将成为我记录机器学习知识
- Python 数据挖掘与机器学习
xiao5kou4chang6kai4
农业生态气象python数据挖掘机器学习
近年来,Python编程语言受到越来越多科研人员的喜爱,在多个编程语言排行榜中持续夺冠。同时,伴随着深度学习的快速发展,人工智能技术在各个领域中的应用越来越广泛。机器学习是人工智能的基础,因此,掌握常用机器学习算法的工作原理,并能够熟练运用Python建立实际的机器学习模型,是开展人工智能相关研究的前提和基础。畅学Python编程及机器学习理论与代码实现方法,从“基础编程→机器学习→代码实现”逐步
- Python数据分析宝藏地带!
计算机视觉研究院
可视化聚类数据分析python机器学习
给大家推荐一个Python机器学习、数据分析的好地方:尤而小屋。这里的原创文章高达260+篇,主要内容涉及:Python机器学习、数据分析、爬虫、kaggle案例分享、Pandas、MySQL、可视化、工具利器等,大家一起来看看,可以关注学习起来喔❤️下面是部分优质原创文章:一、机器学习+kaggle案例机器学习和数据分析案例分享是尤而小屋的核心内容,主要包含机器学习理论+kaggle比赛+数据分
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla