- 【统计学习方法读书笔记】(四)朴素贝叶斯法
Y.G Bingo
统计学习方法人工智能统计学习概率概率论
终于到了贝叶斯估计这章了,贝叶斯估计在我心中一直是很重要的地位,不过发现书中只用了不到10页介绍这一章,深度内容后,发现贝叶斯估计的基础公式确实不多,但是由于正态分布在生活中的普遍性,贝叶斯估计才应用的非常多吧!默认输入变量用XXX表示,输出变量用YYY表示概率公式描述:P(X=x)P(X=x)P(X=x):表示当X=xX=xX=x时的概率P(X=x∣Y=ck)P(X=x|Y=c_k)P(X=x∣
- 【统计学习方法】感知机
jyyym
ml苦手机器学习
一、前言感知机是FrankRosenblatt在1957年就职于康奈尔航空实验室时所发明的一种人工神经网络。它可以被视为一种最简单的前馈神经网络,是一种二元线性分类器。Seemoredetailsinwikipdia感知机.本篇blog将从统计学习方法三要素即模型、策略、算法三个方面介绍感知机,并给出相应代码实现。二、模型假设输入空间是x∈Rnx\in{R^n}x∈Rn,输出空间是y∈{−1,+1
- 赠书 | 李航老师的蓝皮书
茗创科技
赠书活动统计学习方法“统计机器学习方法是实现智能化目标的最有效的手段,统计机器学习是各种智能性处理研究领域中的核心技术,并且在这些领域的发展及应用中起着决定性的作用。”作者简介李航,日本京都大学电气电子工程系毕业,日本东京大学计算机科学博士。北京大学、南京大学客座教授,IEEE会士,ACM杰出科学家,CCF高级会员。研究方向包括信息检索,自然语言处理,统计机器学习,及数据挖掘。曾出版过三部学术专著
- 统计学习方法(李航)--第二章 感知机(比较基础)
人間煙火Just
感知机是二分类的线性分类模型,属于判别模型,包括原始形式和对偶形式。(一)感知机模型公式为:f是输出,x是输入,w和b是参数,sign是符号函数(大于0为1,小于0为-1)几何解释:对于特征空间Rn中的一个超平面S,w是S的法向量,b是截距,将超平面空间划分为两个部分,完成2分类任务。(二)学习策略1.数据集的线性可分性:若存在wx+b的超平面可以将数据集完全分割,则称为线性可分。2.学习策略(以
- 统计学习方法笔记之决策树
Aengus_Sun
更多文章可以访问我的博客Aengus|Blog决策树的概念比较简单,可以将决策树看做一个if-then集合:如果“条件1”,那么...。决策树学习的损失函数通常是正则化后极大似然函数,学习的算法通常是一个递归的选择最优特征,并根据该特征对训练数据进行分割,使得对各个子数据集有一个最好的分类的过程。可以看出,决策树算法一般包含特征选择,决策树的生成与决策树的剪枝过程。特征选择信息增益熵和条件熵在了解
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第6章 逻辑斯谛回归与最大熵模型(2)6.2 最大熵模型
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录6.2最大熵模型6.2.1最大熵原理6.2.3最大熵模型的学习6.2.4极大似然估计《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻近邻法《统计学习方法:李航》笔记从原理到实现(基于python)--第1章统计学习方法概论《统计学习方法:李航》笔记从原理到实现(基于python)--第2章感知机《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻
- 贝叶斯的缺点
人机与认知实验室
机器学习人工智能
贝叶斯方法是一种统计学习方法,通过利用贝叶斯定理来计算给定先验概率的情况下,后验概率的条件概率。虽然贝叶斯方法在许多领域中应用广泛且有效,但也存在一些缺点。以下是一些贝叶斯方法的缺点的例子:1、先验概率的选择贝叶斯方法依赖于先验概率的选择,先验概率的不准确性可能导致后验概率的不准确性。选择先验概率是非常困难的,特别是在没有明确领域知识或可靠数据支持的情况下。2、计算复杂度在贝叶斯方法中,计算后验概
- 机器学习知识体系总结
qq_36661243
机器学习算法
机器学习知识体系总结什么是机器学习?机器学习体系概括监督学习(SupervisedLearning)十种监督学习方法统计学习方法:模型+策略+学习方法模型策略学习算法无监督学习(UnsupervisedLearning)半监督学习参考所有的知识,无论过去,当下和未来,都可以利用某个单一,通用的学习算法中从数据中获取。–《终极算法》什么是机器学习?机器学习(MachineLearning,ML)是一
- 白铁时代 —— (监督学习)原理推导
人生简洁之道
2020年-面试笔记人工智能
来自李航《统计学习方法》文章目录-1指标相似度0概论1优化类1.1朴素贝叶斯1.2k近邻-kNN1.3线性判别分析二分类LDA多分类LDA流程LDA和PCA的区别和联系1.4逻辑回归模型&最大熵模型逻辑回归最大熵模型最优化1.5感知机&SVM感知机SVM线性可分SVM线性不可分SVM对偶优化问题&非线性SVM序列最小优化算法SMO1.7概率图模型EM算法EM算法的导出和流程应用举例:高斯混合模型(
- 最大熵阈值python_李航统计学习方法(六)----逻辑斯谛回归与最大熵模型
weixin_39669638
最大熵阈值python
本文希望通过《统计学习方法》第六章的学习,由表及里地系统学习最大熵模型。文中使用Python实现了逻辑斯谛回归模型的3种梯度下降最优化算法,并制作了可视化动画。针对最大熵,提供一份简明的GIS最优化算法实现,并注解了一个IIS最优化算法的Java实现。本文属于初学者的个人笔记,能力有限,无法对著作中的公式推导做进一步发挥,也无法保证自己的理解是完全正确的,特此说明,恳请指教逻辑斯谛回归模型逻辑斯谛
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第6章 逻辑斯谛回归与最大熵模型(1)6.1 逻辑斯谛回归模型
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录第6章逻辑斯谛回归与最大熵模型6.1逻辑斯谛回归模型6.1.1逻辑斯谛分布6.1.2二项逻辑斯谛回归模型6.1.3模型参数估计6.1.4多项逻辑斯谛回归《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻近邻法《统计学习方法:李航》笔记从原理到实现(基于python)--第1章统计学习方法概论《统计学习方法:李航》笔记从原理到实现(基于python)--第2章感知机《统
- 李航统计学习方法----决策树章节学习笔记以及python代码
詹sir的BLOG
大数据python决策树算法剪枝
目录1决策树模型2特征选择2.1数据引入2.2信息熵和信息增益3决策树生成3.1ID3算法3.2C4.5算法4决策树的剪枝5CART算法(classificationandregressiontree)5.1回归树算法5.2分类树的生成5.3CART剪枝6PYTHON代码实例决策树算法可以应用于分类问题与回归问题,李航的书中主要讲解的是分类树,构建决策树分为三个过程,分别是特征选择、决策树生成、决
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第5章 决策树(代码python实践)
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录第5章决策树—python实践书上题目5.1利用ID3算法生成决策树,例5.3scikit-learn实例《统计学习方法:李航》笔记从原理到实现(基于python)--第5章决策树第5章决策树—python实践importnumpyasnpimportpandasaspdimportmatplotlib.pyplotasplt%matplotlibinlinefromsklearn.dat
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第4章 朴素贝叶斯法
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录第4章朴素贝叶斯法4.1朴素贝叶斯法的学习与分类4.1.1基本方法4.1.2后验概率最大化的含义4.2朴素贝叶斯法的参数估计4.2.1极大似然估计4.2.2学习与算法4.2.3贝叶斯估计代码实践GaussianNB高斯朴素贝叶斯scikit-learn实例scikit-learn:伯努利模型和多项式模型《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻近邻法《统计学习
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第1章 统计学习方法概论
北方骑马的萝卜
机器学习笔记学习方法笔记python机器学习
文章目录第1章统计学习方法概论1.1统计学习1.统计学习的特点2.统计学习的对象3.统计学习的目的4.统计学习的方法1.2.1基本概念1.2.2问题的形式化1.3统计学习三要素1.3.1模型1.3.2策略1.3.3算法1.4模型评估与模型选择1.4.1训练误差与测试误差1.4.2过拟合与模型选择1.5正则化与交叉验证1.5.1正则化1.5.2交叉验证1.6泛化能力1.6.1泛化误差1.6.2泛化误
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第 2章感知机
北方骑马的萝卜
机器学习笔记学习方法笔记python机器学习
文章目录第2章感知机2.1感知机模型2.2感知机学习策略2.2.1数据集的线性可分性2.2.2感知机学习策略2.3感知机学习算法2.3.1感知机学习算法的原始形式2.3.2算法的收敛性2.3.3感知机学习算法的对偶形式实践:二分类模型(iris数据集)数据集可视化:Perceptronscikit-learn实例《统计学习方法:李航》笔记从原理到实现(基于python)--第2章感知机《统计学习方
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第3章 k邻近邻法
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录第3章k邻近邻法3.1k近邻算法3.2k近邻模型3.2.1模型3.2.2距离度量3.2.3k值的选择3.2.4分类决策规则3.3k近邻法的实现:kd树3.3.1构造kd树3.3.2搜索kd树算法实现课本例3.1iris数据集scikit-learn实例kd树:构造平衡kd树算法例3.2《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻近邻法《统计学习方法:李航》笔记从
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第5章 决策树
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录第5章决策树5.1决策树模型与学习5.1.1决策树模型5.1.2决策树与if-then规则5.1.3决策树与条件概率分布5.1.4决策树学习5.2特征选择5.2.1特征选择问题5.2.2信息增益5.2.3信息增益比5.3.1ID3算法5.3.2C4.5的生成算法5.4决策树的剪枝5.5CART算法5.5.1CART生成5.5.2CART剪枝《统计学习方法:李航》笔记从原理到实现(基于pyt
- 自然语言处理发展(自然语言处理发展经历了哪些阶段)
2301_76571514
自然语言处理自然语言处理人工智能
一、历史发展自然语言处理的研究始于20世纪50年代初期,当时的主要任务是理解自然语言,并将其转换为机器语言。随着计算机硬件和软件的不断发展,NLP也得以逐步发展。在20世纪70年代,Chomsky提出了语法结构理论,使NLP的研究进一步深化。此后,人们开始尝试使用统计学习方法来解决NLP中的一些关键问题,例如机器翻译和文本分类等。到了2000年代,随着深度学习和神经网络技术的发展,NLP进一步获得
- 机器学习、深度学习、自然语言处理基础知识总结
北航程序员小C
机器学习专栏人工智能学习专栏深度学习专栏机器学习深度学习自然语言处理
说明机器学习、深度学习、自然语言处理基础知识总结。目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。由于github的markdown解析器不支持latex,因此笔记部分需要在本地使用Typora才能正常浏览,也可以直接访问下面给出的博客链接。Document文件夹下为笔记,Code文件夹下为代码,Data文件夹下为
- 机器学习期末复习总结笔记(李航统计学习方法)
在半岛铁盒里
机器学习机器学习笔记学习方法
文章目录模型复杂度高---过拟合分类与回归有监督、无监督、半监督正则化生成模型和判别模型感知机KNN朴素贝叶斯决策树SVMAdaboost聚类风险PCA深度学习范数计算梯度下降与随机梯度下降SGD线性回归逻辑回归最大熵模型适用性讨论模型复杂度高—过拟合是什么:当模型复杂度越高,对训练集拟合程度越高,然而对新样本的泛化能力却下降了,此时出现overfitting(过拟合)与泛化能力:模型复杂度与泛化
- 统计学习方法-第1章-绪论
chiemon
2019June28监督学习统计学习方法-第1章-绪论统计学习分类分类标准类型基本分类监督学习、无监督学习、强化学习按模型分类概率模型、非概率模型(在监督学习中,概率模型是生成模型,非概率模型是判别模型)按算法分类在线学习、批量学习按技巧分类贝叶斯学习、核方法统计学习方法三要素模型在监督学习过程中,模型就是所要学习的条件概率分布或者决策函数。假设空间$\mathcal{F}$输入空间$\mathc
- 【机器学习】基本模型简易代码整理
_hermit:
机器学习机器学习人工智能学习算法
目录对数几率回归原理损失函数和优化特点和应用支持向量机SVM原理损失函数与优化优点与应用信息增益决策树本文对机器学习课程考试中可能出现的模型代码题进行总结,仅供参考。对数几率回归对数几率回归(LogisticRegression)是机器学习中一种广泛应用的统计学习方法,主要用于二分类问题。尽管其名字中包含“回归”这个词,但实际上它是一种分类算法,而不是传统的回归算法。原理对数几率回归的核心思想是使
- 机器学习:李航 统计学习方法 笔记
lealzhan
机器学习算法
詹令
[email protected]待整理统计学习方法监督学习非监督学习半监督学习强化学习监督学习方法生成方法GenerativeApproach:P(Y∣X)=P(X,Y)P(X)P(Y|X)=\frac{P(X,Y)}{P(X)}P(Y∣X)=P(X)P(X,Y)朴素贝叶斯模型隐式马尔科夫模型判别方法DiscrimitiveApproach:k近邻/knn线性分类模型感知机
- 机器学习算法实战案例:确实可以封神了,时间序列预测算法最全总结!
Python算法实战
机器学习算法实战机器学习算法人工智能python
文章目录1、什么是时间序列预测?技术交流2、时间序列预测分类3、时间序列数据的特性4、时序预测评价指标5、基于深度学习的时间序列预测方法5.1统计学习方法5.2机器学习方法5.3卷积神经网络5.4循环神经网络5.5Transformer类模型大家好,今天开始,我给大家分享时间序列预测算法(理论与实战案例),本篇文章从整体上概述什么是时间序列,时间序列的评价指标,及时间序列中常用的预测算法1、什么是
- 逻辑回归(解决分类问题)
Visual code AlCv
人工智能入门逻辑回归回归分类
定义:逻辑回归是一种用于解决分类问题的统计学习方法。它通过对数据进行建模,预测一个事件发生的概率。逻辑回归通常用于二元分类问题,即将数据分为两个类别。它基于线性回归模型,但使用了逻辑函数(也称为S形函数)来将输出限制在0到1之间,表示事件发生的概率。逻辑回归可以通过最大似然估计或梯度下降等方法来进行参数估计,从而得到一个可以用于分类的模型。一、逻辑回归入门在分类肿瘤的例子中,我们将肿瘤分为恶性肿瘤
- Machine Learning Series--Linear Regression
22岁开始
前言最近看了李航老师的《统计学习方法》,还正在学习吴恩达老师的《机器学习》的课程(网易公开课上有,较老的版本)。自从看过《统计学习方法》之后,发现笔记不看其实学习效果并不好。因此想以电子版格式写下来记录,一方面加深自己的印象,一方面也是希望能够和大家交流。此版本大致与吴恩达老师的《机器学习》课程一致,因为是结合他的课程以及我之前的《统计学习方法》笔记来写的这一系列文章。以下观点均是本人在学习过程当
- 统计学习方法笔记之逻辑斯谛模型与最大熵模型
Aengus_Sun
更多文章可以访问我的博客Aengus|Blog逻辑斯谛回归(LogisticRegression)模型是经典的分类方法,而最大熵则是概率模型中学习的一个准则,将其推广到分类问题得到最大熵模型(maximumentropymodel)。两者都属于对数线性模型。逻辑斯谛模型逻辑斯谛分布设是连续随机变量,服从逻辑斯谛分布是指具有以下分布函数和密度函数:其中,是位置参数,为形状参数。逻辑斯谛分布的密度函数
- AdaBoost算法的详细数学推导过程!!
孤嶋
算法人工智能机器学习AdaBoost
AdaBoost(AdaptiveBoosting)提升(boosting)方法是一种常用的统计学习方法,应用广泛且有效。在分类问题中,它通过改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能。对于分类问题而言,给定一个训练样本集,求比较粗糙的分类规则(弱分类器)要比求精确的分类规则(强分类器)容易得多。提升方法就是从弱学习算法出发,反复学习,得到一系列弱分类器(又称为
- 逻辑回归(Logistic Regression)
草明
数据结构与算法人工智能算法机器学习
什么是机器学习逻辑回归(LogisticRegression)虽然名字中包含"回归"一词,但实际上是一种用于解决分类问题的统计学习方法,而不是回归问题。它是一种线性模型,常用于二分类问题,也可以扩展到多分类问题。基本原理模型表示逻辑回归模型假设输入特征的线性组合,然后通过一个称为逻辑函数(也称为sigmoid函数)将结果映射到一个概率值。对于二分类问题,模型表示如下:其中b0,b1,b2,…,bn
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S