- 深度学习基础之循环神经网络
Ctrl+CV九段手
机器学习和深度学习rnn深度学习神经网络人工智能机器学习学习
目录基本概念与特点定义与工作原理结构组成应用领域自然语言处理语音识别时间序列分析优缺点优点缺点改进方法总结循环神经网络在自然语言处理中的最新应用和研究进展是什么?长短期记忆网络(LSTM)与门控循环单元(GRU)在解决梯度消失和爆炸问题上的具体差异和优势是什么?LSTM的结构与优势GRU的结构与优势具体差异门的数量:计算复杂度:性能对比:总结双向循环神经网络如何增强模型的上下文捕捉能力,与单向RN
- 【学习笔记】第三章深度学习基础——Datawhale X李宏毅苹果书 AI夏令营
MoyiTech
人工智能学习笔记
局部极小值与鞍点梯度为0的点我们统称为临界点,包括局部极小值、鞍点等局部极小值和鞍点的梯度都为0,那如何判断呢?先请出我们损失函数:L(θ),θ是模型中的参数的取值,是一个向量。由于网络的复杂性,我们无法直接写出损失函数,不过我们可以写出损失函数的近似取值。根据宋浩老师所讲的大学一年级高等数学的知识,我们可以通过三阶泰勒展开对损失函数在θ附近的取值进行近似:其中,θ是模型中的参数的取值,θ’是在θ
- 基于matlab的深度学习案例及基础知识专栏前言
逼子歌
matlab深度学习信号处理神经网络矩阵运算CNN
专栏简介内容涵盖深度学习基础知识、深度学习典型案例、深度学习工程文件、信号处理等相关内容,博客由基于matlab的深度学习案例、matlab基础知识、matlab图像基础知识和matlab信号处理基础知识四部分组成。一、基于matlab的深度学习案例1.1、matlab:基于模板匹配的车牌识别_阐述基于模板匹配的车牌识别的字符识别-CSDN博客1.2、基于卷积神经网络(CNN)的车牌自动识别系统(
- pytorch深度学习基础 7(简单的的线性训练,SGD与Adam优化器)
不是浮云笙
pytorch实战深度学习pytorch人工智能
接下来小编来讲一下一些优化器在线性问题中的简单使用使用,torch模块中有一个叫optim的子模块,我们可以在其中找到实现不同优化算法的类SGD随机梯度下降基本概念定义:随机梯度下降(SGD)是一种梯度下降形式,对于每次前向传递,都会从总的数据集中随机选择一批数据,即批次大小1。参数更新过程:这个参数的更新过程可以描述为随机梯度下降法,随机梯度下降(SGD)是一种简单但非常有效的方法,多用于支持向
- Datawhale AI夏令营第四期魔搭- AIGC文生图方向 task03笔记
汪贤阳
人工智能AIGC笔记
如何学习八图ai模型kolors1,Kolors是由快手公司开源的第三代文本到图像生成模型,基于StableDiffusion框架开发。它支持中英文输入,特别在中文内容的理解和生成上表现出色。2,深度学习基础:熟悉神经网络、卷积神经网络(CNN)、Transformer等深度学习模型的基本原理。自然语言处理(NLP):了解文本编码、语言模型等NLP技术,因为Kolors在生成图像时需要理解并处理输
- 1.深度学习基础-模型评估指标
alstonlou
深度学习指南深度学习人工智能机器学习算法python
模型评估指标针对不同类型的任务,需要通过不同的模型评价指标进行评价,在实际应用中,可能需要结合具体任务和需求选择合适的评估方法。有监督学习回归任务回归任务模型的评估主要通过误差和拟合优度来进行,常用的指标包括平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)和决定系数(R²)。在回归任务中,我们主要关注模型预测值与实际值之间的差异大小以及模型对数据整体变化的解释能力。以下是具体介绍
- 深度学习基础——卷积神经网络(一)
牛哥带你学代码
Python数据分析python数学建模算法深度学习cnn人工智能
卷积操作与自定义算子开发卷积是卷积神经网络中的基本操作,对于图像的特征提取有着关键的作用,本文首先介绍卷积的基本原理与作用,然后通过编写程序实现卷积操作,并展示了均值、高斯与sobel等几种经典卷积核的卷积效果,接着调用MindSpore中的卷积算子Conv2d来实现卷积操作,最后介绍了MindSpore中pyfunc和TBE两种自定义算子实现方法。卷积基本原理1.1卷积的概念卷积操作发展于信号处
- 大语言模型学习路线:从入门到实战
Tim_Van
人工智能语言模型自然语言处理大语言模型大模型
大语言模型学习路线:从入门到实战在人工智能领域,大语言模型(LargeLanguageModels,LLMs)正迅速成为一个热点话题。本学习路线旨在为有基本Python编程和深度学习基础的学习者提供一个清晰、系统的大模型学习指南,帮助你在这一领域快速成长。本学习路线更新至2024年02月,后期部分内容或工具可能需要更新。适应人群已掌握Python基础具备基本的深度学习知识学习步骤本路线将通过四个核
- 深度学习基础 叁:反向传播算法
白拾Official
#深度学习神经网络算法网络深度学习人工智能
注:封面画师:新雨林-触站说明本页面无手机端适配,强制缩放阅读。使用纯html格式,保存教学用ppt,添加了部分个人笔记。目录工作正常,可以跳转。反向传播这里对反向传播的讲解比较奇怪,可能比较适合初学者理解。想要通过严谨的数学推导理解反向传播的同学,可以搜索一下。反向传播算法反向传播算法什么是正向传播网络什么是反向传播反向传播算法为什么需要反向传播图解反向传播反向传播计算链式求导法则案例1:通过反
- 深度学习基础之《TensorFlow框架(2)—图》
csj50
机器学习深度学习
一、什么是图结构1、图包含了一组tf.Operation代表的计算单元对象和tf.Tensor代表的计算单元之间流动的数据图结构:数据(Tensor)+操作(Operation)二、图相关操作1、默认图通常TensorFlow会默认帮我们创建一张图查看默认图的两种方法:(1)通过调用tf.compat.v1.get_default_graph()访问,要将操作添加到默认图形中,直接创建OP即可(2
- 深度学习基础之《TensorFlow框架(4)—Operation》
csj50
机器学习深度学习
一、常见的OP1、举例类型实例标量运算add,sub,mul,div,exp,log,greater,less,equal向量运算concat,slice,splot,canstant,rank,shape,shuffle矩阵运算matmul,matrixinverse,matrixdateminant带状态的运算variable,assgin,assginadd神经网络组件softmax,sig
- 大致聊聊ChatGPT的底层原理,实现方法
黑马程序员官方
chatgpt人工智能机器学习
文目录深度学习基础ChatGPT的本质ChatGPT原理详解一、深度学习基础—深度学习是什么?如何理解神经网络结构?关于生物神经网络结构如下:神经网络介绍人工神经网络(ArtificialNeuralNetwork,简写为ANN)也简称为神经网络(NN),是一种模仿生物神经网络结构和功能的计算模型。当电信号通过树突进入到核细胞时,会逐渐聚集电荷。达到一定的电位后,细胞会被激活,通过轴突发出信号。从
- 深度学习基础
EEPI
深度学习人工智能
深度学习基础highvariance/datamismatchwhatisdatamismatchhowtosolvedatamismatchdatasynthesis数据合成迁移学习与预训练/微调什么时候用迁移学习highvariance/datamismatchwhatisdatamismatch如果训练集和验证集的loss不一样,且验证集的loss高很多,有2种原因:1.方差太大。模型没见过
- 深度学习基础--反向传播
掰不开桃子的男人
Modelimage.png前向传播image.png反向传播求误差image.png求对J的影响image.pngimage.png求对J的影响image.pngimage.png误差反传image.pngimage.pngimage.png参考:深度学习—反向传播(BP)理论推导-Backpropagation算法的推导与直观图解-文之-博客园
- 深度学习基础之-3.3线性二分类的神经网络实现
SusanLovesTech
深度学习二分类神经网络线性实现python
线性二分类的神经网络实现提出问题回忆历史,公元前206年,楚汉相争,当时刘邦项羽麾下的城池地理位置如下:0.红色圆点,项羽的城池1.绿色叉子,刘邦的城池其中,在边界处有一些红色和绿色重合的城池,表示双方激烈争夺的拉锯战。样本序号123…119经度相对值0.0254.109…7.767纬度相对值3.4088.012…1.8721=汉,0=楚110…1问题:经纬度相对值为(5,1)时,属于楚还是汉?经
- 深度学习入门资料整理
AI视觉网奇
应该看的算法深度学习基础深度学习入门
深度学习基础总结,无一句废话(附完整思维导图)深度学习如何入门?-知乎深度学习入门基础讲义_shuzfan的博客-CSDN博客_深度学习入门神经网络15分钟入门!足够通俗易懂了吧-知乎深度学习基础知识点梳理-知乎
- 新书速览|PyTorch 2.0深度学习从零开始学
全栈开发圈
深度学习pytorch人工智能
实战中文情感分类、拼音汉字转化、中文文本分类、拼音汉字翻译、强化学习、语音唤醒、人脸识别01本书简介本书以通俗易懂的方式介绍PyTorch深度学习基础理论,并以项目实战的形式详细介绍PyTorch框架的使用。为读者揭示PyTorch2.0进行深度学习项目实战的核心技术,实战案例丰富而富有启发。02本书内容本书共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实
- 基于Python的深度学习基础
程序媛了了
python开发语言
Python基础Python是一种开源的、简单易记、可以自由使用编程语言。深度学习将使用NumPy和Matplotlib这两种外部库Python有“解释器”和“脚本文件”两种运行模式Python能够将一系列处理集成为函数或类等模块NumPy中有很多用于操作多维数组的便捷方法类与对象变量是挂在对象身上的标签classMan:#定义了一个新类Man,类Man生成了实例(对象)m#类Man的构造函数(初
- 深度学习知识学习笔记
wyn20001128
图像处理深度学习算法
一相关的深度学习基础知识(1)线性回归 设房屋的⾯积为x1x_1x1,房龄为x2x_2x2,售出价格为yyy。我们需要建⽴基于输⼊x1x_1x1和x2x_2x2来计算输出的表达式,yyy也就是模型(model)。顾名思义,线性回归假设输出与各个输⼊之间是线性关系:y=w1x1+w2x2+by=w_1x_1+w_2x_2+by=w1x1+w2x2+b 在模型训练中,我们需要衡量价格预测值与真实值
- 【深度学习基础】什么是卷积?为什么要用卷积?
BIT可达鸭
▶深度学习-计算机视觉神经网络卷积计算机视觉深度学习python
什么是卷积?为什么要用卷积?(一)卷积的原理:1.卷积核:2.卷积层参数:2.1卷积核数:2.2卷积核的大小:2.3步长:2.4填充:3.池化层:3.1最大池化层(maxpooling):3.2均值池化层(averagepooling):(二)卷积的作用:1.减少参数量:
- Coursera吴恩达《深度学习》课程总结(全)
双木的木
吴恩达深度学习笔记AI笔记深度学习神经网络人工智能python
这里有Coursera吴恩达《深度学习》课程的完整学习笔记,一共5门课:《神经网络和深度学习》、《改善深层神经网络》、《结构化机器学习项目》、《卷积神经网络》和《序列模型》,最后附上人工智能领域大师访谈,干货满满。第一门课:神经网络和深度学习基础,介绍一些基本概念。(四周)第二门课:深度学习方面的实践,严密的构建神经网络,如何真正让它表现良好。超参数调整,正则化诊断偏差和方差,高级优化算法,如Mo
- 深度学习简介与应用
jcfszxc
测试专栏深度学习
深度学习简介与应用深度学习是人工智能领域中备受关注的一项技术,通过模拟人脑神经网络的结构,实现了在大规模数据上进行复杂任务的能力。本文将简要介绍深度学习的基本概念,并探讨其在不同领域的应用。深度学习基础深度学习的核心是神经网络,它由多个层次组成,每一层都包含多个神经元。通过训练这些神经网络,系统能够自动学习数据中的模式和特征,从而实现分类、预测等任务。人工神经网络结构输入层:接收数据的第一层,每个
- 深度学习基础知识
湘溶溶
深度学习分割深度学习人工智能
卷积神经网络——图像卷积特征提取卷积核(算子)用来做图像处理时的矩阵,与原图像做运算的参数。卷积层基本参数(卷积核大小,步长【pytorch默认为1】,padding边缘填充)输出尺寸=(输入尺寸-卷积核尺寸+2*padding)/stride+1卷积神经网络的基本结构层输入层:批次通道图像大小卷积层激活函数:加入非线性因素,提高神经网络对模型的表达能力,解决线性模型所不能解决的问题,CNN较为常
- 大模型的学习路线图推荐—多维度深度分析【云驻共创】
一见已难忘
IT分享/测评/交流学习大模型语言模型多维度深度分析
本文背景近年来,随着深度学习技术的迅猛发展,大模型已经成为学术界和工业界的热门话题。大模型具有数亿到数十亿的参数,这使得它们在处理复杂任务时表现得更为出色,但同时也对计算资源和数据量提出了更高的要求。学习大模型的路线图通常需要一系列的基础知识、进阶技能以及实际应用经验。以下是一些相关的背景信息:1.深度学习基础:学习大模型之前,对深度学习的基本概念、神经网络的原理、激活函数、损失函数等基础知识有一
- 深度学习基础之数据操作
丘小羽
pytorch深度学习人工智能
深度学习中最常用的数据是张量,对张量进行操作是进行深度学习的基础。以下是对张量进行的一些操作:首先我们需要先导入相关的张量库torch。元素构造(初始化)使用arange创造一个行向量,也就是0轴(0维)。默认是按顺序创建,从0开始,元素类型默认是整数,当然也可以指定为浮点数。比如:可以使用张量shape属性来访问张量(沿每个轴的长度)的形状(shape)。当然指的是形状,也可能不只是一个维度。我
- Pytorch第2周:深度学习基础 - Day 8-9: 神经网络基础
M.D
深度学习神经网络人工智能pytorchpythontensorflow2
Pytorch第2周:深度学习基础-Day8-9:神经网络基础学习目标:理解神经网络的基础概念。学习如何使用PyTorch的nn模块构建神经网络。学习内容:神经网络基础概念:神经元:构成神经网络的基本单元,模拟生物神经元的功能。层:神经网络的构建块,包括输入层、隐藏层和输出层。激活函数:引入非线性因素,使网络能够学习复杂的模式,如ReLU、Sigmoid、Tanh等。使用PyTorch的nn模块:
- 吴恩达倾情推荐!28张图全解深度学习知识!
深度学习算法与自然语言处理
NLP与大模型机器学习深度学习人工智能自然语言处理机器学习
本文约7500字,建议阅读15分钟本文将从深度学习基础(01-13)、卷积网络(14-22)和循环网络(23-28)三个方面介绍该笔记。吴恩达在推特上展示了一份由TessFerrandez完成的深度学习专项课程图,这套信息图优美地记录了深度学习课程的知识与亮点。因此它不仅仅适合初学者了解深度学习,还适合机器学习从业者和研究者复习基本概念。这不仅仅是一份课程笔记,同时还是一套信息图与备忘录。需要原版
- 【深度学习入门】深度学习基础概念与原理
代码骑士
#深度学习人工智能
*(本篇文章旨在帮助新手了解深度学习的基础概念和原理,不深入讨论算法及核心公式)目录一、深度学习概述1、什么是深度学习?2、深度学习与传统机器学习的区别3、深度学习的应用领域二、深度学习基本原理1、神经网络的基本结构(1)什么是神经网络?(2)神经网络基本结构2、激活函数的作用和选择(1)什么是激活函数?(2)激活函数的作用与选择3、损失函数的定义和选择(1)什么是损失函数(2)损失函数的选择4、
- 深度学习基础数据结构之张量:从一维到多维
m0_61254808
深度学习python深度学习机器学习人工智能
张量在深度学习框架中广泛应用于模型的输入、输出以及中间计算过程。通过支持高维度矩阵运算、记录梯度信息等功能,张量成为实现深度学习算法的关键。张量是一个多维数据容器,可以用来表示各种数据类型,如数值、图像、音频、文本等。本文将介绍一维、二维、三维和四维张量的形象展示、应用以及对学习理解的作用。01一维张量一维张量通常被称为向量,如一维数组[1,4,3,2,5],在数学和线性代数中,向量是指具有大小和
- 深度学习基础知识整理
Do1phln
ML深度学习人工智能
自动编码器Auto-encoders是一种人工神经网络,用于学习未标记数据的有效编码。它由两个部分组成:编码器和解码器。编码器将输入数据转换为一种更紧凑的表示形式,而解码器则将该表示形式转换回原始数据。这种方法可以用于降维,去噪,特征提取和生成模型。自编码器的训练过程是无监督的,因为它不需要标记数据。它的目标是最小化重构误差,即输入数据与解码器输出之间的差异。这可以通过反向传播算法和梯度下降等优化
- Maven
Array_06
eclipsejdkmaven
Maven
Maven是基于项目对象模型(POM), 信息来管理项目的构建,报告和文档的软件项目管理工具。
Maven 除了以程序构建能力为特色之外,还提供高级项目管理工具。由于 Maven 的缺省构建规则有较高的可重用性,所以常常用两三行 Maven 构建脚本就可以构建简单的项目。由于 Maven 的面向项目的方法,许多 Apache Jakarta 项目发文时使用 Maven,而且公司
- ibatis的queyrForList和queryForMap区别
bijian1013
javaibatis
一.说明
iBatis的返回值参数类型也有种:resultMap与resultClass,这两种类型的选择可以用两句话说明之:
1.当结果集列名和类的属性名完全相对应的时候,则可直接用resultClass直接指定查询结果类
- LeetCode[位运算] - #191 计算汉明权重
Cwind
java位运算LeetCodeAlgorithm题解
原题链接:#191 Number of 1 Bits
要求:
写一个函数,以一个无符号整数为参数,返回其汉明权重。例如,‘11’的二进制表示为'00000000000000000000000000001011', 故函数应当返回3。
汉明权重:指一个字符串中非零字符的个数;对于二进制串,即其中‘1’的个数。
难度:简单
分析:
将十进制参数转换为二进制,然后计算其中1的个数即可。
“
- 浅谈java类与对象
15700786134
java
java是一门面向对象的编程语言,类与对象是其最基本的概念。所谓对象,就是一个个具体的物体,一个人,一台电脑,都是对象。而类,就是对象的一种抽象,是多个对象具有的共性的一种集合,其中包含了属性与方法,就是属于该类的对象所具有的共性。当一个类创建了对象,这个对象就拥有了该类全部的属性,方法。相比于结构化的编程思路,面向对象更适用于人的思维
- linux下双网卡同一个IP
被触发
linux
转自:
http://q2482696735.blog.163.com/blog/static/250606077201569029441/
由于需要一台机器有两个网卡,开始时设置在同一个网段的IP,发现数据总是从一个网卡发出,而另一个网卡上没有数据流动。网上找了下,发现相同的问题不少:
一、
关于双网卡设置同一网段IP然后连接交换机的时候出现的奇怪现象。当时没有怎么思考、以为是生成树
- 安卓按主页键隐藏程序之后无法再次打开
肆无忌惮_
安卓
遇到一个奇怪的问题,当SplashActivity跳转到MainActivity之后,按主页键,再去打开程序,程序没法再打开(闪一下),结束任务再开也是这样,只能卸载了再重装。而且每次在Log里都打印了这句话"进入主程序"。后来发现是必须跳转之后再finish掉SplashActivity
本来代码:
// 销毁这个Activity
fin
- 通过cookie保存并读取用户登录信息实例
知了ing
JavaScripthtml
通过cookie的getCookies()方法可获取所有cookie对象的集合;通过getName()方法可以获取指定的名称的cookie;通过getValue()方法获取到cookie对象的值。另外,将一个cookie对象发送到客户端,使用response对象的addCookie()方法。
下面通过cookie保存并读取用户登录信息的例子加深一下理解。
(1)创建index.jsp文件。在改
- JAVA 对象池
矮蛋蛋
javaObjectPool
原文地址:
http://www.blogjava.net/baoyaer/articles/218460.html
Jakarta对象池
☆为什么使用对象池
恰当地使用对象池化技术,可以有效地减少对象生成和初始化时的消耗,提高系统的运行效率。Jakarta Commons Pool组件提供了一整套用于实现对象池化
- ArrayList根据条件+for循环批量删除的方法
alleni123
java
场景如下:
ArrayList<Obj> list
Obj-> createTime, sid.
现在要根据obj的createTime来进行定期清理。(释放内存)
-------------------------
首先想到的方法就是
for(Obj o:list){
if(o.createTime-currentT>xxx){
- 阿里巴巴“耕地宝”大战各种宝
百合不是茶
平台战略
“耕地保”平台是阿里巴巴和安徽农民共同推出的一个 “首个互联网定制私人农场”,“耕地宝”由阿里巴巴投入一亿 ,主要是用来进行农业方面,将农民手中的散地集中起来 不仅加大农民集体在土地上面的话语权,还增加了土地的流通与 利用率,提高了土地的产量,有利于大规模的产业化的高科技农业的 发展,阿里在农业上的探索将会引起新一轮的产业调整,但是集体化之后农民的个体的话语权 将更少,国家应出台相应的法律法规保护
- Spring注入有继承关系的类(1)
bijian1013
javaspring
一个类一个类的注入
1.AClass类
package com.bijian.spring.test2;
public class AClass {
String a;
String b;
public String getA() {
return a;
}
public void setA(Strin
- 30岁转型期你能否成为成功人士
bijian1013
成功
很多人由于年轻时走了弯路,到了30岁一事无成,这样的例子大有人在。但同样也有一些人,整个职业生涯都发展得很优秀,到了30岁已经成为职场的精英阶层。由于做猎头的原因,我们接触很多30岁左右的经理人,发现他们在职业发展道路上往往有很多致命的问题。在30岁之前,他们的职业生涯表现很优秀,但从30岁到40岁这一段,很多人
- [Velocity三]基于Servlet+Velocity的web应用
bit1129
velocity
什么是VelocityViewServlet
使用org.apache.velocity.tools.view.VelocityViewServlet可以将Velocity集成到基于Servlet的web应用中,以Servlet+Velocity的方式实现web应用
Servlet + Velocity的一般步骤
1.自定义Servlet,实现VelocityViewServl
- 【Kafka十二】关于Kafka是一个Commit Log Service
bit1129
service
Kafka is a distributed, partitioned, replicated commit log service.这里的commit log如何理解?
A message is considered "committed" when all in sync replicas for that partition have applied i
- NGINX + LUA实现复杂的控制
ronin47
lua nginx 控制
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-14.输入一个已经按升序排序过的数组和一个数字, 在数组中查找两个数,使得它们的和正好是输入的那个数字
bylijinnan
java
public class TwoElementEqualSum {
/**
* 第 14 题:
题目:输入一个已经按升序排序过的数组和一个数字,
在数组中查找两个数,使得它们的和正好是输入的那个数字。
要求时间复杂度是 O(n) 。如果有多对数字的和等于输入的数字,输出任意一对即可。
例如输入数组 1 、 2 、 4 、 7 、 11 、 15 和数字 15 。由于
- Netty源码学习-HttpChunkAggregator-HttpRequestEncoder-HttpResponseDecoder
bylijinnan
javanetty
今天看Netty如何实现一个Http Server
org.jboss.netty.example.http.file.HttpStaticFileServerPipelineFactory:
pipeline.addLast("decoder", new HttpRequestDecoder());
pipeline.addLast(&quo
- java敏感词过虑-基于多叉树原理
cngolon
违禁词过虑替换违禁词敏感词过虑多叉树
基于多叉树的敏感词、关键词过滤的工具包,用于java中的敏感词过滤
1、工具包自带敏感词词库,第一次调用时读入词库,故第一次调用时间可能较长,在类加载后普通pc机上html过滤5000字在80毫秒左右,纯文本35毫秒左右。
2、如需自定义词库,将jar包考入WEB-INF工程的lib目录,在WEB-INF/classes目录下建一个
utf-8的words.dict文本文件,
- 多线程知识
cuishikuan
多线程
T1,T2,T3三个线程工作顺序,按照T1,T2,T3依次进行
public class T1 implements Runnable{
@Override
 
- spring整合activemq
dalan_123
java spring jms
整合spring和activemq需要搞清楚如下的东东1、ConnectionFactory分: a、spring管理连接到activemq服务器的管理ConnectionFactory也即是所谓产生到jms服务器的链接 b、真正产生到JMS服务器链接的ConnectionFactory还得
- MySQL时间字段究竟使用INT还是DateTime?
dcj3sjt126com
mysql
环境:Windows XPPHP Version 5.2.9MySQL Server 5.1
第一步、创建一个表date_test(非定长、int时间)
CREATE TABLE `test`.`date_test` (`id` INT NOT NULL AUTO_INCREMENT ,`start_time` INT NOT NULL ,`some_content`
- Parcel: unable to marshal value
dcj3sjt126com
marshal
在两个activity直接传递List<xxInfo>时,出现Parcel: unable to marshal value异常。 在MainActivity页面(MainActivity页面向NextActivity页面传递一个List<xxInfo>): Intent intent = new Intent(this, Next
- linux进程的查看上(ps)
eksliang
linux pslinux ps -llinux ps aux
ps:将某个时间点的进程运行情况选取下来
转载请出自出处:http://eksliang.iteye.com/admin/blogs/2119469
http://eksliang.iteye.com
ps 这个命令的man page 不是很好查阅,因为很多不同的Unix都使用这儿ps来查阅进程的状态,为了要符合不同版本的需求,所以这个
- 为什么第三方应用能早于System的app启动
gqdy365
System
Android应用的启动顺序网上有一大堆资料可以查阅了,这里就不细述了,这里不阐述ROM启动还有bootloader,软件启动的大致流程应该是启动kernel -> 运行servicemanager 把一些native的服务用命令启动起来(包括wifi, power, rild, surfaceflinger, mediaserver等等)-> 启动Dalivk中的第一个进程Zygot
- App Framework发送JSONP请求(3)
hw1287789687
jsonp跨域请求发送jsonpajax请求越狱请求
App Framework 中如何发送JSONP请求呢?
使用jsonp,详情请参考:http://json-p.org/
如何发送Ajax请求呢?
(1)登录
/***
* 会员登录
* @param username
* @param password
*/
var user_login=function(username,password){
// aler
- 发福利,整理了一份关于“资源汇总”的汇总
justjavac
资源
觉得有用的话,可以去github关注:https://github.com/justjavac/awesome-awesomeness-zh_CN 通用
free-programming-books-zh_CN 免费的计算机编程类中文书籍
精彩博客集合 hacke2/hacke2.github.io#2
ResumeSample 程序员简历
- 用 Java 技术创建 RESTful Web 服务
macroli
java编程WebREST
转载:http://www.ibm.com/developerworks/cn/web/wa-jaxrs/
JAX-RS (JSR-311) 【 Java API for RESTful Web Services 】是一种 Java™ API,可使 Java Restful 服务的开发变得迅速而轻松。这个 API 提供了一种基于注释的模型来描述分布式资源。注释被用来提供资源的位
- CentOS6.5-x86_64位下oracle11g的安装详细步骤及注意事项
超声波
oraclelinux
前言:
这两天项目要上线了,由我负责往服务器部署整个项目,因此首先要往服务器安装oracle,服务器本身是CentOS6.5的64位系统,安装的数据库版本是11g,在整个的安装过程中碰到很多的坑,不过最后还是通过各种途径解决并成功装上了。转别写篇博客来记录完整的安装过程以及在整个过程中的注意事项。希望对以后那些刚刚接触的菜鸟们能起到一定的帮助作用。
安装过程中可能遇到的问题(注
- HttpClient 4.3 设置keeplive 和 timeout 的方法
supben
httpclient
ConnectionKeepAliveStrategy kaStrategy = new DefaultConnectionKeepAliveStrategy() {
@Override
public long getKeepAliveDuration(HttpResponse response, HttpContext context) {
long keepAlive
- Spring 4.2新特性-@Import注解的升级
wiselyman
spring 4
3.1 @Import
@Import注解在4.2之前只支持导入配置类
在4.2,@Import注解支持导入普通的java类,并将其声明成一个bean
3.2 示例
演示java类
package com.wisely.spring4_2.imp;
public class DemoService {
public void doSomethin