Jzzhu has invented a kind of sequences, they meet the following property:
You are given x and y, please calculate fn modulo 1000000007 (109 + 7).
Input
The first line contains two integers x and y (|x|, |y| ≤ 109). The second line contains a single integer n (1 ≤ n ≤ 2·109).
Output
Output a single integer representing fn modulo 1000000007 (109 + 7).
Example
Input
2 3
3
Output
1
Input
0 -1
2
Output
1000000006
Note
In the first sample, f2 = f1 + f3, 3 = 2 + f3, f3 = 1.
In the second sample, f2 = - 1; - 1 modulo (109 + 7) equals (109 + 6).
题目大意:输入x,y,n,f(1) = x, f(2) = y,求f(n);
思路:从题意可知:f(n) = f(n-1) + f(n+1), 即f(n+1) = f(n) - f(n-1)....看上去是不是特别想斐波那契数列。。。。可以求得系数矩阵 A = {{1,-1}{1,0}},所以可以通过矩阵快速幂来求出f[n]。
x[1] = {f[2],-f[1]},所以x[n] = {f[n+1],-f[n]},,因为要求f[n]的值,所以我们要求的是x[n-1],即A^(n-2) * X1 = X(n-1),所以calcu(n-2)。
代码如下:
#include
using namespace std;
#define ll long long
const ll mod = 1e9+7;
ll x,y,n;
struct Matrix{
ll a[3][3];
}ori,res;
void Init(){
ori.a[0][0] = ori.a[1][0] = 1;
ori.a[0][1] = -1;
ori.a[1][1] = 0;
memset(res.a,0,sizeof(res));
for(int i = 0; i < 2; i ++) res.a[i][i] = 1;
}
Matrix multiply(Matrix x, Matrix y){
Matrix temp;
memset(temp.a,0,sizeof(temp.a));
for(int i = 0; i < 2; i ++){
for(int j = 0; j < 2; j ++){
for(int k = 0; k < 2; k ++){
temp.a[i][j] += (x.a[i][k] * y.a[k][j] % mod);
temp.a[i][j] %= mod;
}
}
}
return temp;
}
void calcu(int n){
Matrix temp;
while(n){
if(n & 1) res = multiply(res,ori);
n >>= 1;
ori = multiply(ori,ori);
}
memset(temp.a,0,sizeof(temp.a));
temp.a[0][0] = y; temp.a[1][0] = x;
res = multiply(res,temp);
printf("%lld\n",(res.a[0][0] + mod) % mod);
}
int main(){
while(~scanf("%lld%lld%lld",&x,&y,&n)){
Init();
if(n == 1) printf("%lld\n",(x + mod) % mod);
else if(n == 2) printf("%lld\n",(y + mod) % mod);
else calcu(n-2);//f(n+1) = f(n) -f(n-1),
}
return 0;
}