近期打算阅读以下Android源码,先从数据结构开始。今天谈谈SparseArray。
1、成员变量
private int[] mKeys;
private Object[] mValues;
private int mSize;
/**
* Creates a new SparseArray containing no mappings.
*/
public SparseArray() {
this(10);
}
/**
* Creates a new SparseArray containing no mappings that will not
* require any additional memory allocation to store the specified
* number of mappings. If you supply an initial capacity of 0, the
* sparse array will be initialized with a light-weight representation
* not requiring any additional array allocations.
*/
public SparseArray(int initialCapacity) {
if (initialCapacity == 0) {
mKeys = EmptyArray.INT;
mValues = EmptyArray.OBJECT;
} else {
mValues = ArrayUtils.newUnpaddedObjectArray(initialCapacity);
mKeys = new int[mValues.length];
}
mSize = 0;
}
3. get函数
/**
* Gets the Object mapped from the specified key, or null
* if no such mapping has been made.
*/
public E get(int key) {
return get(key, null);
}
/**
* Gets the Object mapped from the specified key, or the specified Object
* if no such mapping has been made.
*/
@SuppressWarnings("unchecked")
public E get(int key, E valueIfKeyNotFound) {
int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
if (i < 0 || mValues[i] == DELETED) {
return valueIfKeyNotFound;
} else {
return (E) mValues[i];
}
}
4.put函数
/**
* Adds a mapping from the specified key to the specified value,
* replacing the previous mapping from the specified key if there
* was one.
*/
public void put(int key, E value) {
int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
if (i >= 0) {
mValues[i] = value;
} else {
i = ~i;
if (i < mSize && mValues[i] == DELETED) {
mKeys[i] = key;
mValues[i] = value;
return;
}
if (mGarbage && mSize >= mKeys.length) {
gc();
// Search again because indices may have changed.
i = ~ContainerHelpers.binarySearch(mKeys, mSize, key);
}
mKeys = GrowingArrayUtils.insert(mKeys, mSize, i, key);
mValues = GrowingArrayUtils.insert(mValues, mSize, i, value);
mSize++;
}
}
/**
* Removes the mapping from the specified key, if there was any.
*/
public void delete(int key) {
int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
if (i >= 0) {
if (mValues[i] != DELETED) {
mValues[i] = DELETED;
mGarbage = true;
}
}
}
/**
* @hide
* Removes the mapping from the specified key, if there was any, returning the old value.
*/
public E removeReturnOld(int key) {
int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
if (i >= 0) {
if (mValues[i] != DELETED) {
final E old = (E) mValues[i];
mValues[i] = DELETED;
mGarbage = true;
return old;
}
}
return null;
}
/**
* Alias for {@link #delete(int)}.
*/
public void remove(int key) {
delete(key);
}
/**
* Removes the mapping at the specified index.
*
* For indices outside of the range 0...size()-1
,
* the behavior is undefined.
*/
public void removeAt(int index) {
if (mValues[index] != DELETED) {
mValues[index] = DELETED;
mGarbage = true;
}
}
/**
* Remove a range of mappings as a batch.
*
* @param index Index to begin at
* @param size Number of mappings to remove
*
* For indices outside of the range 0...size()-1
,
* the behavior is undefined.
*/
public void removeAtRange(int index, int size) {
final int end = Math.min(mSize, index + size);
for (int i = index; i < end; i++) {
removeAt(i);
}
}
private void gc() {
// Log.e("SparseArray", "gc start with " + mSize);
int n = mSize;
int o = 0;
int[] keys = mKeys;
Object[] values = mValues;
for (int i = 0; i < n; i++) {
Object val = values[i];
if (val != DELETED) {
if (i != o) {
keys[o] = keys[i];
values[o] = val;
values[i] = null;
}
o++;
}
}
mGarbage = false;
mSize = o;
// Log.e("SparseArray", "gc end with " + mSize);
}
/**
* Returns the number of key-value mappings that this SparseArray
* currently stores.
*/
public int size() {
if (mGarbage) {
gc();
}
return mSize;
}
/**
* Given an index in the range 0...size()-1
, returns
* the key from the index
th key-value mapping that this
* SparseArray stores.
*
* The keys corresponding to indices in ascending order are guaranteed to
* be in ascending order, e.g., keyAt(0)
will return the
* smallest key and keyAt(size()-1)
will return the largest
* key.
*
* For indices outside of the range 0...size()-1
,
* the behavior is undefined.
*/
public int keyAt(int index) {
if (mGarbage) {
gc();
}
return mKeys[index];
}
/**
* Given an index in the range 0...size()-1
, returns
* the value from the index
th key-value mapping that this
* SparseArray stores.
*
* The values corresponding to indices in ascending order are guaranteed
* to be associated with keys in ascending order, e.g.,
* valueAt(0)
will return the value associated with the
* smallest key and valueAt(size()-1)
will return the value
* associated with the largest key.
*
* For indices outside of the range 0...size()-1
,
* the behavior is undefined.
*/
@SuppressWarnings("unchecked")
public E valueAt(int index) {
if (mGarbage) {
gc();
}
return (E) mValues[index];
}
/**
* Given an index in the range 0...size()-1
, sets a new
* value for the index
th key-value mapping that this
* SparseArray stores.
*
* For indices outside of the range 0...size()-1
, the behavior is undefined.
*/
public void setValueAt(int index, E value) {
if (mGarbage) {
gc();
}
mValues[index] = value;
}
/**
* Returns the index for which {@link #keyAt} would return the
* specified key, or a negative number if the specified
* key is not mapped.
*/
public int indexOfKey(int key) {
if (mGarbage) {
gc();
}
return ContainerHelpers.binarySearch(mKeys, mSize, key);
}
/**
* Returns an index for which {@link #valueAt} would return the
* specified key, or a negative number if no keys map to the
* specified value.
* Beware that this is a linear search, unlike lookups by key,
* and that multiple keys can map to the same value and this will
* find only one of them.
*
Note also that unlike most collections' {@code indexOf} methods,
* this method compares values using {@code ==} rather than {@code equals}.
*/
public int indexOfValue(E value) {
if (mGarbage) {
gc();
}
for (int i = 0; i < mSize; i++)
if (mValues[i] == value)
return i;
return -1;
}
/**
* Removes all key-value mappings from this SparseArray.
*/
public void clear() {
int n = mSize;
Object[] values = mValues;
for (int i = 0; i < n; i++) {
values[i] = null;
}
mSize = 0;
mGarbage = false;
}
/**
* Puts a key/value pair into the array, optimizing for the case where
* the key is greater than all existing keys in the array.
*/
public void append(int key, E value) {
if (mSize != 0 && key <= mKeys[mSize - 1]) {
put(key, value);
return;
}
if (mGarbage && mSize >= mKeys.length) {
gc();
}
mKeys = GrowingArrayUtils.append(mKeys, mSize, key);
mValues = GrowingArrayUtils.append(mValues, mSize, value);
mSize++;
}