矩阵的行初等变换

文章目录

  • 行初等变换的概念
  • 初等变换的实现
  • 初等变换的性质
  • 初等变换矩阵的行列式

行初等变换的概念


对矩阵的初等变换主要包括以下三种操作:

  • 将某行乘以 ( c ≠ 0 ) (c \neq 0) (c̸=0)
  • 将某行的 c c c 倍加到另外一行上;
  • 交换两行;

与行初等变换类似的有一个列初等变换,操作是在列上进行,同时一个矩阵要实现列初等变换:需要右乘列初等变换矩阵。


初等变换的实现


初等变换的三种操作都可以 “左乘一个矩阵” 来实现,比如,对于矩阵:
假设存在矩阵:
A = ( 2 3 3 9 3 4 2 9 − 2 − 2 3 2 ) A=\left(\begin{array}{cccc} {2} & {3} & {3} & {9} \\ {3} & {4} & {2} & {9} \\ {-2} & {-2} & {3} & {2} \end{array}\right) A=232342323992

  • 将第 3 3 3 行乘以 5 5 5:(左)乘以 将单位矩阵的 ( 3 , 3 ) (3, 3) (3,3) 元素替换成 5 5 5 得到矩阵 Q 3 ( 5 ) Q_3(5) Q3(5):也可以理解为:要将第三个维度进行拉伸 ;
    Q 3 ( 5 ) = ( 1 0 0 0 1 0 0 0 5 ) Q_{3}(5)=\left(\begin{array}{lll}{1} & {0} & {0} \\ {0} & {1} & {0} \\ {0} & {0} & {5} \end{array}\right) Q3(5)=100010005
    Q 3 ( 5 ) A = [ 1 0 0 0 1 0 0 0 5 ] [ 2 3 3 9 3 4 2 9 − 2 − 2 3 2 ] = [ 2 3 3 9 3 4 2 9 − 10 − 10 15 10 ] \begin{aligned} Q_{3}(5) A &=\left[\begin{array}{lll}{1} & {0} & {0} \\ {0} & {1} & {0} \\ {0} & {0} & {5}\end{array}\right]\left[\begin{array}{cccc}{2} & {3} & {3} & {9} \\ {3} & {4} & {2} & {9} \\ {-2} & {-2} & {3} & {2}\end{array}\right] \\ &=\left[\begin{array}{ccccc}{2} & {3} & {3} & {9} \\ {3} & {4} & {2} & {9} \\ {-10} & {-10} & {15} & {10}\end{array}\right] \end{aligned} Q3(5)A=100010005232342323992=2310341032159910

  • 1 1 1 行乘以 10 10 10 加到第 2 2 2 行上:(左)乘以将单位矩阵的第 1 1 1 行乘以 10 10 10 加到第 2 2 2 行上得到矩阵 R 2 , 1 ( 10 ) R_{2,1}(10) R2,1(10)
    R 2 , 1 ( 10 ) = ( 1 0 0 10 1 0 0 0 1 ) R_{2,1}(10)=\left(\begin{array}{lll}{1} & {0} & {0} \\ {10} & {1} & {0} \\ {0} & {0} & {1} \end{array}\right) R2,1(10)=1100010001
    R 2 , 1 ( 10 ) A = [ 1 0 0 10 1 0 0 0 1 ] [ 2 3 3 9 3 4 2 9 − 2 − 2 3 2 ] = [ 2 3 3 9 23 34 32 99 − 2 − 2 3 2 ] \begin{aligned} R_{2,1}(10) A &=\left[\begin{array}{lll}{1} & {0} & {0} \\ {10} & {1} & {0} \\ {0} & {0} & {1}\end{array}\right] \left[\begin{array}{cccc} {2} & {3} & {3} & {9} \\ {3} & {4} & {2} & {9} \\ {-2} & {-2} & {3} & {2}\end{array}\right] \\ &=\left[\begin{array}{ccccc}{2} & {3} & {3} & {9} \\ {23} & {34} & {32} & {99} \\ {-2} & {-2} & {3} & {2}\end{array}\right] \end{aligned} R2,1(10)A=1100010001232342323992=2232334233239992

  • 交换第 1 1 1 行和第 3 3 3 行:(左)乘以将单位矩阵交换第 1 1 1 行和第 3 3 3 行得到矩阵 S 1 , 3 S_{1,3} S1,3
    S 1 , 3 = ( 0 0 1 0 1 0 1 0 0 ) S_{1,3}=\left(\begin{array}{lll}{0} & {0} & {1} \\ {0} & {1} & {0} \\ {1} & {0} & {0} \end{array}\right) S1,3=001010100
    S 1 , 3 A = [ 0 0 1 0 1 0 1 0 0 ] [ 2 3 3 9 3 4 2 9 − 2 − 2 3 2 ] = [ − 2 − 2 3 2 3 4 2 9 2 3 3 9 ] \begin{aligned} S_{1,3} A &=\left[\begin{array}{lll}{0} & {0} & {1} \\ {0} & {1} & {0} \\ {1} & {0} & {0}\end{array}\right] \left[\begin{array}{cccc} {2} & {3} & {3} & {9} \\ {3} & {4} & {2} & {9} \\ {-2} & {-2} & {3} & {2}\end{array}\right] \\ &=\left[\begin{array}{ccccc}{-2} & {-2} & {3} & {2} \\ {3} & {4} & {2} & {9} \\ {2} & {3} & {3} & {9}\end{array}\right] \end{aligned} S1,3A=001010100232342323992=232243323299

总结,对矩阵的初等变换都可以通过左乘如: Q i ( c ) , R i , j ( c ) , S i , j Q_{i}(c), R_{i, j}(c), S_{i, j} Qi(c),Ri,j(c),Si,j 来实现。


初等变换的性质


  • 若方阵 A A A 可逆,则一定可以通过初等变换得到单位矩阵 I I I
  • 针对行初等变换矩阵: Q i ( c ) , R i , j ( c ) , S i , j Q_{i}(c), R_{i, j}(c), S_{i, j} Qi(c),Ri,j(c),Si,j,若 c ≠ 0 , i ≠ j c \neq 0, i \neq j c̸=0,i̸=j,行初等变换矩阵都是可逆的,并有如下等式:
    Q i ( c ) − 1 = Q i ( 1 / c ) R i , j ( c ) − 1 = R i , j ( − c ) S i , j − 1 = S i , j \begin{aligned} Q_{i}(c)^{-1} &=Q_{i}(1 / c) \\ R_{i, j}(c)^{-1} &=R_{i, j}(-c) \\ S_{i, j}^{-1} &=S_{i, j} \end{aligned} Qi(c)1Ri,j(c)1Si,j1=Qi(1/c)=Ri,j(c)=Si,j

初等变换矩阵的行列式


行列式可以理解为空间扩大率,初等变换矩阵的行列式如下:

矩阵的行初等变换_第1张图片

  • det ⁡ Q i ( c ) = c \operatorname{det} Q_{i}(c) = c detQi(c)=c :相当于把空间扩大了 c c c 倍;
  • det ⁡ R i , j ( c ) = 1 \operatorname{det} R_{i, j}(c) = 1 detRi,j(c)=1 :只是把空间进行了偏移,空间大小并没有改变;
  • det ⁡ S i , j = − 1 \operatorname{det} S_{i, j} = -1 detSi,j=1 :只是把空间进行了镜像,空间大小不变,方向改变;

由以上性质可得:

  • 将第 i i i 行乘以 c c c,行列式为原来的 c c c 倍: det ⁡ ( Q i ( c ) A ) = ( det ⁡ Q i ( c ) ) ( det ⁡ A ) = c det ⁡ A \operatorname{det}\left(Q_{i}(c) A\right)=\left(\operatorname{det} Q_{i}(c)\right)(\operatorname{det} A)=c \operatorname{det} A det(Qi(c)A)=(detQi(c))(detA)=cdetA
  • 将第 j j j 行乘以 c c c 加到第 i i i 行,行列式值不变: det ⁡ ( R i , j ( c ) A ) = ( det ⁡ R i , j ( c ) ) ( det ⁡ A ) = det ⁡ A \operatorname{det}\left(R_{i, j}(c) A\right)=\left(\operatorname{det} R_{i, j}(c)\right)(\operatorname{det} A)=\operatorname{det} A det(Ri,j(c)A)=(detRi,j(c))(detA)=detA
  • 交换第 i , j i, j i,j,行列式的正负号改变,等价于: det ⁡ ( S i , j A ) = ( det ⁡ S i , j ) ( det ⁡ A ) = − det ⁡ A \operatorname{det}\left(S_{i, j} A\right)=\left(\operatorname{det} S_{i, j}\right)(\operatorname{det} A)=-\operatorname{det} A det(Si,jA)=(detSi,j)(detA)=detA

你可能感兴趣的:(数学--矩阵)