AOE-网 (Activity On Edge) , 即以边表示活动的网。 AOE-网是一个带权的有向无环图, 其中顶点表示事件, 弧表示活动, 权表示活动持续的时间。
要估算整项工程完成的最短时间, 就是要找一条从源点到 汇点的带权路径长度最长的路径, 称为关键路径 (Critical Path)。关键路径上的 活动叫做关键活动,这些活动是影响工程进度的关键, 它们的提前或拖延将使整个工程提前或拖延。
其关键路径为:
关键路径有两条: (v0, v1,v4,v6, v8)或(v0, v1,v4,v7,v8), 长度均为18。关键活动为(a1, a4, a7, a10)或(a1, a4, a8, a11)。
1,事件v的最早发生时间ve(i):ve(i) = Max{ve(k) + W(i,k)}
2,事件v的最迟发生时间vl(i):vl(i) = Min{vl(k) - W(k,i)}
根据前两个可求得后两个:
3,活动a的最早开始时间e(i):e(i) = ve(j)
4,活动a的最晚开始时间l(i) :l(i) = vl(k) - (ai的持续时间)
找出 e(i)=i(i)的活动a, 即为关键活动。由关键活动形成的由源点到汇点的每一条路径 就是关键路径,关键路径有可能不止一条。
以上图为例:
#include
#define MVNum 100
typedef char OtherInfo;
typedef char VerTexType;
//图的邻接表存储结构
typedef struct ArcNode //边结点
{
int adjvex;//邻接点域
struct ArcNode *nextarc;//链域
OtherInfo info;//数据域
int weight; //权值
}ArcNode;
typedef struct VNode //顶点信息
{
VerTexType data;//数据域
ArcNode *firstarc;//链域
}VNode, AdjList[MVNum];
typedef struct //邻接表
{
AdjList vertices;
int vexnum, arcnum;
}ALGraph;
//函数声明
int LocateVex(ALGraph G, char v);
void LinkAL(ALGraph &G, int i, int j, int weight);
void FindInDegree(ALGraph G, int indegree[]);
void printTopo(int topo[], int m);
//邻接表创建有向图
void CreateUDG(ALGraph &G)
{
G.vexnum = 9; //输入总顶点数和边数
G.arcnum = 11;
G.vertices[0].data = 'v0'; //输入顶点信息
G.vertices[0].firstarc = NULL;
G.vertices[1].data = 'v1';
G.vertices[1].firstarc = NULL;
G.vertices[2].data = 'v2';
G.vertices[2].firstarc = NULL;
G.vertices[3].data = 'v3';
G.vertices[3].firstarc = NULL;
G.vertices[4].data = 'v4';
G.vertices[4].firstarc = NULL;
G.vertices[5].data = 'v5';
G.vertices[5].firstarc = NULL;
G.vertices[6].data = 'v6';
G.vertices[6].firstarc = NULL;
G.vertices[7].data = 'v7';
G.vertices[7].firstarc = NULL;
G.vertices[8].data = 'v8';
G.vertices[8].firstarc = NULL;
int i, j; //输入边信息
i = LocateVex(G, 'v0');
j = LocateVex(G, 'v1');
LinkAL(G, i, j, 6);
i = LocateVex(G, 'v0');
j = LocateVex(G, 'v2');
LinkAL(G, i, j, 4);
i = LocateVex(G, 'v0');
j = LocateVex(G, 'v3');
LinkAL(G, i, j, 5);
i = LocateVex(G, 'v1');
j = LocateVex(G, 'v4');
LinkAL(G, i, j, 1);
i = LocateVex(G, 'v2');
j = LocateVex(G, 'v4');
LinkAL(G, i, j, 1);
i = LocateVex(G, 'v3');
j = LocateVex(G, 'v5');
LinkAL(G, i, j, 2);
i = LocateVex(G, 'v4');
j = LocateVex(G, 'v6');
LinkAL(G, i, j, 9);
i = LocateVex(G, 'v4');
j = LocateVex(G, 'v7');
LinkAL(G, i, j, 7);
i = LocateVex(G, 'v5');
j = LocateVex(G, 'v7');
LinkAL(G, i, j, 4);
i = LocateVex(G, 'v6');
j = LocateVex(G, 'v8');
LinkAL(G, i, j, 2);
i = LocateVex(G, 'v7');
j = LocateVex(G, 'v8');
LinkAL(G, i, j, 4);
}
//建立边
void LinkAL(ALGraph &G, int i, int j, int weight)
{
ArcNode *p1;
p1 = new ArcNode;
p1->adjvex = j;
p1->nextarc = G.vertices[i].firstarc; //头插法
G.vertices[i].firstarc = p1;
p1->weight = weight;
}
//返回顶点位置下标
int LocateVex(ALGraph G, char v)
{
for (int i = 0; i < G.vexnum; i++)
{
if (G.vertices[i].data == v)
{
return i;
}
}
}
//打印输出图
void printGraph(ALGraph G)
{
for (int i = 0; i < G.vexnum; i++)
{
printf("%d :", i);
printf("v%d ->", i);
ArcNode *p;
p = G.vertices[i].firstarc;
while (p != NULL)
{
printf("%d->", p->adjvex);
p = p->nextarc;
}
printf("\n");
}
}
//邻接表深度优先遍历
bool visited[MVNum];
void DFS_AL(ALGraph G, int v)
{
printf("v%c->", G.vertices[v].data);
visited[v] = true;
ArcNode *p;
p = G.vertices[v].firstarc;
while (p != NULL)
{
int w = p->adjvex;
if (!visited[w])
{
DFS_AL(G, w);
}
p = p->nextarc;
}
}
//定义栈
#define MAXSIZE 100
typedef struct
{
int base[MAXSIZE];
int *top;
int stacksize;
}SqStack;
//初始化
int InitStack(SqStack &S)
{
S.top = S.base;
S.stacksize = MAXSIZE;
return 1;
}
//入栈
int Push(SqStack &S, int e)
{
if (S.top - S.base == S.stacksize) return 0;
*S.top++ = e;
return 1;
}
//出栈
int Pop(SqStack &S, int &e)
{
if (S.top == S.base) return 0;
e = *--S.top;
return 1;
}
//拓扑排序
int indegree[MVNum]; //存放各顶点入度
int topo[MVNum]; //存放拓扑序列的顶点序号
SqStack S; //暂存入度为0的顶点
int TopologicalSort(ALGraph G, int topo[])
{
ArcNode *p;
int i, m = 0; //m用来计数
FindInDegree(G, indegree); //求各顶点的入度存入indegree数组
InitStack(S);
for (i = 0; i < G.vexnum; i++)
{
if (!indegree[i])
{
Push(S, i); //入度为0的入栈
}
}
while (S.base != S.top)
{
Pop(S, i);
topo[m] = i; //入度为0的出栈并存入topo数组中
m++; //计数加一
p = G.vertices[i].firstarc; //p指向后继边结点
while (p != NULL)
{
int k = p->adjvex; //k为顶点下标值
--indegree[k]; //顶点的入度减1来代替删除边的操作
if (indegree[k] == 0) //如果减1后为0 则入栈
{
Push(S, k);
}
p = p->nextarc; //继续下一个后继边结点
}
}
if (m < G.vexnum) return 0; //输出的顶点数小千有向图中的顶点数,则说明有向图中存在环
else return m; //否则投拓扑排序成功,无环
}
//求各顶点的入度
void FindInDegree(ALGraph G, int indegree[])
{
//初始化
for (int i = 0; i < G.vexnum; i++)
{
indegree[i] = 0;
}
ArcNode *p;
//遍历整个邻接表求出入度
for (int j = 0; j < G.vexnum; j++)
{
p = G.vertices[j].firstarc;
while (p != NULL)
{
indegree[p->adjvex]++;
p = p->nextarc;
}
}
}
//打印拓扑序列
void printTopo(int topo[], int m)
{
printf("\n该图的一个拓扑序列为:");
for (int i = 0; i < m; i++)
{
printf("v%d->", topo[i]);
}
}
//关键路径算法
int ve[MVNum]; //事件最早发生时间
int vl[MVNum]; //事件最晚发生时间
int CriticalPath(ALGraph G)
{
//初始化最早发生时间为最小
int n, i;
if (!TopologicalSort(G, topo)) return 0; //拓扑排序失败,有环!
n = G.vexnum;
for (i = 0; i < n; i++)
{
ve[i] = 0;
}
//求每个事件最早发生时间
ArcNode *p;
int k, j;
for (i = 0; i < n; i++)
{
k = topo[i];
p = G.vertices[k].firstarc;
while (p != NULL)
{
j = p->adjvex;
if (ve[j]<ve[k] + p->weight) //更新顶点的最早方式时间即最大的weight活动
{
ve[j] = ve[k] + p->weight; //第一个顶点的最早发生时间ve[0]==0;
}
p = p->nextarc;
}
}
//初始化最晚发生时间为最大
for (i = 0; i < n; i++)
{
vl[i] = ve[n - 1];
}
//逆拓扑排序求最迟发生时间
for (i = n - 1; i >= 0; i--) //从倒数第二个顶点开始
{
k = topo[i];
p = G.vertices[k].firstarc;
while (p != NULL)
{
j = p->adjvex;
if (vl[k]>vl[j] - p->weight)
{
vl[k] = vl[j] - p->weight;
}
p = p->nextarc;
}
}
//判断是否为关键路径
printf("\n关键路径为:");
int e, l;
for (i = 0; i < n; i++)
{
p = G.vertices[i].firstarc;
while (p != NULL)
{
j = p->adjvex;
e = ve[i];
l = vl[j] - p->weight;
if (e == l) //相等则为关键活动,输出对应的关键路径
{
printf("\nv%c->v%c ", G.vertices[i].data, G.vertices[j].data);
}
p = p->nextarc;
}
}
}
int main()
{
ALGraph G;
CreateUDG(G);
printGraph(G);
int v = 0;
printf("深度优先遍历:");
DFS_AL(G, v);
//拓扑排序
printf("\n==========================\n");
int loop = TopologicalSort(G, topo);
if (loop == 0)
{
printf("\n拓扑排序失败,该图有环!\n");
}
else
{
printf("\n拓扑排序成功,该图无环!");
printTopo(topo, loop); //输出拓扑序列
}
//关键路径
CriticalPath(G);
//输出ve[]和vl[]数组
printf("\nve[]:");
for (int i = 0; i <G.vexnum; i++)
{
printf("%d,", ve[i]);
}
printf("\nvl[]:");
for (int i = 0; i <G.vexnum; i++)
{
printf("%d,", vl[i]);
}
}