2019独角兽企业重金招聘Python工程师标准>>>
深度优先遍历配合回溯,是解决很多问题的好方法,比如八皇后问题。
皇后的排布规则:n个皇后放在n*n的矩阵里,要求一列只有一个,一行只有一个,任一斜线上只有一个(/和\)。
通常,我们会把皇后作为一个数组,行号作为数组的下标,而列号是数组元素的值,由此,二维平面的排布问题就成了一维数组的求解,配合检验函数以及回溯,就可以求解了。
这里,我使用一个状态表(一个好的状态表可以比检验函数要有效率的多)来维护某个行可能的填入皇后的列号,每次放下皇后或者拿起皇后,都会对状态表进行更新。按行号的顺序依次安置皇后,安放完最后一个皇后,就得到了问题的一个解。
但是这会带来一个问题,那就是求解的难度会随着皇后的数量增加,耗时会剧增,差不多是O(n^3)的程度。
所以,我们要找一个可以更快解决问题的方法。
注意,八皇后问题的一个隐含的条件是:我们可以在任意位置安放皇后,没有次序的要求。但是当我们抽象到二维数组的时候,往往会忽略这一点。现在,考虑到这个情况,我们有如下解决方案:
当我们放下一个皇后之后,可以从剩余的所有行中,选择一个候选列号最少的,进行下一步的安置。
这样做的好处时,可以大大减弱搜索树的规模,这种减弱越靠近根部,就越明显。
因此,我们可以加入一个交换的函数。当然,这样一来,我们的状态表里就应该加上关于行号和列号的记录了。
最终代码如下:
num=8
class Queen(object):
def __init__(self,n):
self.lct= n
self.prs=-1
self.cdt=[1 for i in range(num)]
def Count(q):
s=0
for i in range(num):
if q.cdt[i]>0:s+=1
return s
def FindIt(q):
u=q.prs+1;
while u=0 and b=0 and b=0 and b=0 and bt:j,k=i,t
if j!=n:q[n],q[j]=q[j],q[n]
def ShowIt(q):
for i in range(num):
for j in range(num):
if q[j].lct==i:
for k in range(num):
if q[j].prs==k:
print '*',
else:
print '-',
print ''
print ''
def Locate1():
q=[Queen(i) for i in range(num)]
i=0
j=0
while 1:
if q[i].prs<0:
Select(q,i)
else:
Pickup(q,i)
if FindIt(q[i]):
if i=0:Pickup(q,i)
if FindIt(q[i]):
if i
算法很简单,也没有注释。我是用一个列表同时保存了皇后的行号、列号和状态表。当皇后放下后,状态表表示她放下时的所有可能位置(也就是放下后就不更新了),未放下的皇后的状态表会不断更新。一个指针,该指针左边都是放下的,右边都是未放下的,指针所指的皇后元素,是要进行挪动的那个。
那么,结果呢?如下:
(08) 92 , 0.027 <=> 0.024 , ----- <=> ------
(09) 352 , 0.113 <=> 0.096 , ----- <=> ------
(10) 724 , 0.467 <=> 0.432 , ----- <=> ------
(11) 2680 , 1.919 <=> 1.956 , ----- <=> ------
(12) 14200 , 9.786 <=> 10.647 , ----- <=> ------
(13) 73712 , 52.080 <=> 59.131 , ----- <=> ------
(14) 365596 , 326.946 <=> 462.586 , ----- <=> ------
(15) ------ , ------- <=> ------- , ----- <=> ------
(16) ------ , ------- <=> ------- , 0.002 <=> 0.175
(17) ------ , ------- <=> ------- , 0.002 <=> 0.103
(18) ------ , ------- <=> ------- , 0.003 <=> 0.770
(19) ------ , ------- <=> ------- , 0.002 <=> 0.053
(20) ------ , ------- <=> ------- , 0.005 <=> 4.075
(21) ------ , ------- <=> ------- , 0.004 <=> 0.195
(22) ------ , ------- <=> ------- , 0.002 <=> 36.618
(23) ------ , ------- <=> ------- , 0.003 <=> 0.563
(24) ------ , ------- <=> ------- , 0.003 <=> 9.280
(25) ------ , ------- <=> ------- , 0.013 <=> 1.157
(26) ------ , ------- <=> ------- , 0.022 <=> 9.391
(27) ------ , ------- <=> ------- , 0.008 <=> 11.390
(28) ------ , ------- <=> ------- , 0.003 <=> 74.833
(29) ------ , ------- <=> ------- , 0.029 <=> 42.061
(30) ------ , ------- <=> ------- , 0.018 <=> ------
(40) ------ , ------- <=> ------- , 0.158 <=> ------
(50) ------ , ------- <=> ------- , 0.040 <=> ------
(60) ------ , ------- <=> ------- , 0.032 <=> ------
(70) ------ , ------- <=> ------- , 0.077 <=> ------
(80) ------ , ------- <=> ------- , 0.054 <=> ------
(90) ------ , ------- <=> ------- , 2.162 <=> ------
上表的最左边是皇后的个数;第一栏是解的数量;随后的一对数据依次是优化和非优化版本的求全部解的耗时;最后一对数据依次是优化和非优化版本的求第一个解的耗时。
可见这种优化的效果还是很好的。(虽然小数量是反而慢一些,但这是必然的,算法越精巧,也就要做越多的处理操作,自然会在处理小规模数据时不利)
这种改进,对于没有次序要求的深度搜索/回溯求解非常有效,比如,数独。
本质上,这种方法和A*算法有些异曲同工,一个是旨在“剪枝”,一个则使用经验函数“抄近路”,而它们的使用上,其实都是一样的:对所有可能的下一步进行排序之后,选择效果最好/几率最高的进行。