NCPC 2016 Exponial (欧拉降幂)

题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=2021

题目大意:给出n和m,定义一个函数exponial(n)=n(n − 1)(n − 2)21,要你求出这个函数膜m的结果;

题目思路:由于这个幂次实在太大了,所以得采用欧拉降幂公式来处理

欧拉降幂公式:

其中代表C的欧拉函数;(C的欧拉函数等于不超过C且和C互素的整数个数)。

有了这个公式我们就可以通过递归来处理上面的幂次,将整体的大小下降好几个档次了,具体实现看代码。

AC代码如下:

#include 
#include 
#include 
#include 
#include 
#define INF 0x3f3f3f3f
#define fuck(x) cout<<'['<pii;
const int MX = 23333;

LL n,m;

LL euler(LL n){
    LL m = (LL)sqrt(n+0.5);
    LL ans = n;
    for(int i = 2;i <= m;i++){
        if(n%i == 0){
            ans = ans/i*(i-1);
            while(n%i == 0) n /= i;
        }
    }
    if(n > 1) ans = ans/n*(n - 1);
    return ans;
}

LL quick_pow(LL a,LL b,LL mod){
    LL res = 1;
    while(b){
        if(b&1) res = (res*a)%mod;
        a = (a * a) % mod;
        b >>= 1;
    }
    return res;
}

LL solve(LL n,LL m){
    if(m == 1) return 0;
    if(n == 1) return 1;
    else if(n == 2) return 2%m;
    else if(n == 3) return 9%m;
    else if(n == 4) return quick_pow(4,9,m);
    else{
        LL phi = euler(m);
        LL k = solve(n-1,phi);
        LL ans = quick_pow(n,phi+k,m);
        return ans;
    }
}

int main(){
    while(~scanf("%lld%lld",&n,&m)){
        printf("%lld\n",solve(n,m));
    }
    return 0;
}


你可能感兴趣的:(数论,ACM)