Given 5 integers: a,b,c,d,k , you’re to find x∈[a,b],y∈[c,d] that gcd(x,y)=k . gcd(x,y) means the greatest common divisor of x and y .
Since the number of choices may be very large, you’re only required to output the total number of different number pairs.
Please notice that, (x=5,y=7) and (x=7,y=5) are considered to be the same.
You can assume that a=c=1 in all test cases.
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers:
a,b,c,d,k,0<a≤b≤100,000,0<c≤d≤100,000,0≤k≤100,000
,as described above.
For each test case, print the number of choices. Use the format in the example.
2
1 3 1 5 1
1 11014 1 14409 9
Case 1: 9
Case 2: 736427
问题基于一个简单的结论:
设
可见有:
由莫比乌斯反演原理有:
所以:
此题中要求 (x,y),(y,x) 不重复计数
不妨设 A≤B