BZOJ2818:Gcd(莫比乌斯函数 & 欧拉函数)

2818: Gcd

Time Limit: 10 Sec   Memory Limit: 256 MB
Submit: 5078   Solved: 2281
[ Submit][ Status][ Discuss]

Description

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.

Input

一个整数N

Output

如题

Sample Input

4

Sample Output

4

HINT

hint

对于样例(2,2),(2,4),(3,3),(4,2)


1<=N<=10^7

Source

湖北省队互测


解法①:莫比乌斯函数 分块加速3724ms

gcd(a, b) = prime,又因为gcd(a/prime, b/prime) = prime,即求n/prime[i]内互质的对数,枚举下n以内的质数即可。

# include 
# include 
# include 
# define ll long long
using namespace std;
const int maxn = 1e7;
short mu[maxn+3];
int prime[maxn+3];
bool bo[maxn+3];
int n;

void get_table()
{
    mu[1] = 1;
    memset(bo, 0, sizeof(bo));
    for(int i=2; i<=maxn; ++i)
    {
        if(!bo[i])
        {
            prime[++prime[0]] = i;
            mu[i] = -1;
        }
        for(int j=1; j<=prime[0] && i*prime[j]<=maxn; ++j)
        {
            bo[i*prime[j]] = 1;
            if(i%prime[j] == 0)
            {
                mu[i*prime[j]] = 0;
                break;
            }
            else
                mu[i*prime[j]] = -mu[i];
        }
    }
    for(int i=1; i

解法②:欧拉函数 5544ms

打个欧拉函数表,phi[n]表示小于等于n且与n互质的数的个数,求个前缀和即可。

欧拉函数一些定理:phi[p] = p-1,(p为素数),phi[x*p] = phi[x]*p(p为素数,且p为x的因子),phi[x*p] = phi[x]*(p-1)(p为素数,且p不为x的因子),打表就是根据这些规律打的。

# include 
# include 
# include 
# define ll long long
using namespace std;
const int maxn = 1e7;
ll phi[maxn+3];
int prime[maxn+3];
bool bo[maxn+3];
int n;

void make_table()
{
    phi[1] = 1;
    memset(bo, 0, sizeof(bo));
    for(int i=2; i<=maxn; ++i)
    {
        if(!bo[i])
        {
            prime[++prime[0]] = i;
            phi[i] = i-1;
        }
        for(int j=1; j<=prime[0] && i*prime[j]<=maxn; ++j)
        {
            int k = i*prime[j];
            bo[k] = 1;
            if(i % prime[j]==0)
            {
                phi[k] = phi[i]*prime[j];
                break;
            }
            else
                phi[k] = phi[i]*(prime[j]-1);
        }
    }
    for(int i=1; i<=maxn; ++i)
        phi[i] += phi[i-1];
}

int main()
{
    make_table();
    while(~scanf("%d",&n))
    {
        ll ans = 0;
        int i;
        for(i=1; i<=prime[0]&&n/prime[i]; ++i)
            ans += phi[n/prime[i]];
        --i;
        printf("%lld\n",(ans<<1)-i);
    }
    return 0;
}


你可能感兴趣的:(数论)