算法复杂度

1.什么是算法

An algorithm is a clearly specified set of simple instructions to be followed to solve a problem.

排序算法讲解

2.算法分析

Algorithm analysis is the amount of computer memory and time needed to run a program (algorithm)

3.时间复杂度和空间复杂度

  • 空间:运行所需要的内存
  • 时间:运行所需要的时间

3.1 空间复杂度

3.1.1 组成

  • 指令空间 instruction space
  • 数据空间 data space(包括常量,变量,成员变量)
  • 运行环境栈(to save information needed to resume execution of partially completed functions)‘

即分为两部分,即固定的部分和可变的部分(分别包括space for instructions,simple variables,fixed-size component variables,constants以及space for component variables,dynamical allocated space,recursion stack)

下面看几个例子

例子1
public static int SequentialSearch(int[] a, int x) {
    int i;
    for (i = 0; i < a.length && a[i] != x; i++) {

    }
    if (i == a.length)
        return -1;
    return i;
}

Total data space:
12 bytes : x,i,a[i],0,-1,a.length
each of them cost 2 bytes 
Thus, S(n)=0

例子2
public static float Rsum(float[] a, int n) {
    if (n > 0)
        return Rsum(a, n - 1) + a[n - 1];
    return 0;
}

Recursion stack space:
formal parameters : a (2 byte), n(2 byte) return address(2 byte)
Depth of recursion: n+1 
Thus, S(n)=6(n+1)

3.2 时间复杂度

程序的执行时间为T(p),T(p) = compile time + run time

identify one or more key operations and determine the number of times these are performed(找到一个或更多的关键操作并且指出它们执行需要的时间)

//Example 1
//finding the largest number in a[0:n-1]
public static int Max(int[] a, int n) {
    //locate the largest element in a[0:n-1]
    int pos = 0;
    for (int i = 1; i < n; i++)
        if (a[pos] < a[i]) pos = i;
    return pos;
}

compare time : n-1

Example 2
//selection sort
0  1  2  3   4  5
21 25 49 25* 16 08
08 25 49 25* 16 21
08 16 49 25* 25 21
08 16 21 25* 25 49
08 16 21 25* 25 49
08 16 21 25* 25 49

public static void SelectionSort(int[] a, int n) {
    //sort the n number in a[0:n-1].
    for (int size = n; size > 1; size--) {
        int j = Max(a, size);
        swap(a[j], a[size - 1]);
    }
}

对选择排序进行分析

  1. 每次调用Max(a,size)带来size-1次比较,所以总共的比较次数为:n-1+n-2+......+3+2+1=(n-1)*n/2
  2. 元素的移动一共进行了3(n-1)次(swap,交换两个元素的值,需要第三个变量)
Example3
//bubble sort
8 25 32 15 20 38 46 54 67
public static void Bubble(int[] a, int n) {
    //Bubble largest element in a[0:n-1] to right
    for (int i = 0; i < n - 1; i++) 
        if (a[i] > a[i + 1]) 
            swap(a[i], a[i + 1]);
}

public static void BubbleSort(int[] a, int n) { 
    //Sort a[0:n-1] using a bubble sort
    for (int i = n; i > 1; i--) 
        Bubble(a, i);
}

对冒泡排序进行分析

  • 总共的比较次数为:(n-1)*n/2
Example 4
//Rank sort
r: 0 2 1 4 3
   0 1 2 3 4 
a: 8 25 16 30 28
public static void Rank(int[] a, int n, int[] r) {
    //Rank the n elements a[0:n-1]
    for (int i = 0; i < n; i++)
        r[i] = 0;
    for (int i = 1; i < n; i++)
        for (int j = 0; j < i; j++)
            if (a[j] <= a[i]) r[i]++;
            else r[j]++;
}

public static void Rearrange(int[] a, int n, int[] r) {
    //In-place rearrangement into sorted order
    for (int i = 0; i < n; i++)
        while (r[i] != i) {
            int t = r[i];
            swap(a[i], a[t]);
            swap(r[i], r[t]);
        }
}

对Rank排序进行分析

  1. 比较次数:(n-1)*n/2
  2. 移动次数:2n

最好的,最坏的以及平均的操作数,平均的操作数通常难以得出。因此,我们的分析从最好以及最坏操作数来进行

你可能感兴趣的:(算法复杂度)