tensorflow入门学习笔记 2. 第一个程序

程序功能:构造一
个满足一元二次函数 y = ax 2 +b 的原始数据,然后构建一个最简单的神经网络,仅包含一个输入
层、一个隐藏层和一个输出层。通过 TensorFlow 将隐藏层和输出层的 weights 和 biases 的值学

习出来,看看随着训练次数的增加,损失值是不是不断在减小。

代码如下:

# -*- coding:utf-8 -*-
import tensorflow as tf
import numpy as np

# 构造满足一元二次函数 y = ax^2 +b 的原始数据
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])


# 定义隐藏层和输出层
def add_layer(inputs, in_size, out_size, activation_functi=None):
    weights = tf.Variable(tf.random_normal([in_size, out_size]))
    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
    Wx_plus_b = tf.matmul(inputs, weights) + biases
    if activation_functi is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_functi(Wx_plus_b)
    return  outputs

h1 = add_layer(xs, 1, 20, activation_functi=tf.nn.relu)
prediction = add_layer(h1, 20, 1, activation_functi=None)

loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)


# 训练模型
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for i in range(1000):
    sess.run(train_step, feed_dict={xs: x_data, ys:y_data})
    if i % 50 == 0:
        print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))

结果如下(每次运行结果不一定会相同):

tensorflow入门学习笔记 2. 第一个程序_第1张图片

你可能感兴趣的:(tensorflow)