多重比较法-LSD

多重比较法-LSD_第1张图片

总第174篇/张俊红

前面我们讲了方差分析,方差分析主要是用于多组均值比较的,方差分析的结果是多组均值之间是否有显著性差异,但是这个显著性差异是整体的显著性差异,可是我们并不知道具体是哪些组之间有显著性差异。所以就有了我们今天的多重比较,目的就是为了获取具体哪些组之间有显著差异。

多重比较法方法有很多种,这篇主要介绍一下比较常用的一种LSD,LSD是least significant difference的缩写,又称最小显著差异方法。

使用LSD方法的具体步骤为:

1.提出假设:H0:两组之间无差异;H1:两组之间有差异。
2.计算检验统计量:两组均值之差的绝对值。
3.计算LSD,公式为:

tα/2为t分布的临界值,通过查t分布表得到,其自由度为n-k,n为样本总数,k为因素中不同水平的水平个数;MSE为组内方差;ni和nj分别为第i个样本和j个样本的样本量。
4.根据显著性水平α做作出决策,如果均值之差的绝对值大于LSD,则拒绝H0,否则不拒绝H0。

接下来举个栗子,带着大家把上面的流程走一遍。

step1:提出如下假设。

假设1:H0:零售业与旅游业无差异;H1:零售业与旅游业有差异
假设2:H0:零售业与航空业无差异;H1:零售业与航空业有差异
假设3:H0:零售业与家电制造业无差异;H1:零售业与家电制造业有差异
假设4:H0:旅游业与航空业无差异;H1:旅游业与航空业有差异
假设5:H0:旅游业与家电制造业无差异;H1:旅游业与家电制造业有差异
假设6:H0:航空业与家电制造业无差异;H1:航空业与家电制造业有差异

step2:计算检验统计量,即各两组之间的均值之差的绝对值

假设1、2、3、4、5、6分别对应的均值之差绝对值为1、14、10、13、11、24

step3:根据LSD公式计算每个假设对应的LSD值。

根据数据求取得到组内平方和MSE = 142.526,具体求取方法参考前面讲的方差分析;
通过查t分布表,在α=0.05以及自由度=n-k=23-4=19情况下,tα/2=2.093;
最后计算出不同假设对应的LSD值为13.90、14.63、14.63、15.13、15.13、15.80

step4:作出决策。

假设1的均值之差绝对值1小于对应的LSD值13.90,所以不拒绝假设H0,即不能认为零售业与旅游业有显著差异;
假设2的均值之差绝对值14小于对应的LSD值14.63,所以不拒绝假设H0,即不能认为零售业与航空业有显著差异;
假设3的均值之差绝对值10小于对应的LSD值14.63,所以不拒绝假设H0,即不能认为零售业与家电制造业有显著差异;
假设4的均值之差绝对值13小于对应的LSD值15.13,所以不拒绝假设H0,即不能认为旅游业与航空业有显著差异;
假设5的均值之差绝对值11小于对应的LSD值15.13,所以不拒绝假设H0,即不能认为旅游业与家电制造业有显著差异;
假设6的均值之差绝对值24大于对应的LSD值15.80,所以拒绝假设H0,即认为航空业与家电制造业有显著差异。

以上就是关于多重比较法-LSD的一个简单介绍以及案例,希望对大家有用。

你还可以看:

聊聊置信度与置信区间

统计学的假设检验

一元线性回归分析

方差分析

多因素方差分析

卡方检验讲解


再次推荐贾俊平老师的《统计学》书籍。

你可能感兴趣的:(多重比较法-LSD)