- 基于R语言的DICE模型实践技术应用;评估气候变化对经济的影响以及不同减排政策的经济成本和效益
KY_chenzhao
DICE模型R语言气候变化
DICE模型是一个动态综合气候经济模型,由诺贝尔经济学奖得主WilliamNordhaus开发,用于评估气候变化对经济的影响以及不同减排政策的经济成本和效益。以下是一个关于DICE模型在气候变化影响评估中的实际应用案例,结合R语言代码进行讲解。实际案例:评估全球碳税政策的影响假设我们要评估一项全球碳税政策对经济增长、碳排放和气候变化的影响。我们将使用DICE模型的基本框架来进行分析。模型构建经济部
- R语言的软件工程
BinaryBardC
包罗万象golang开发语言后端
R语言的软件工程1.引言随着数据科学的快速发展,R语言作为一种统计计算和图形绘制的编程语言,其在数据分析、可视化以及机器学习等领域的应用日益广泛。尽管R语言在数据处理上有其独特的优势,但要将其运用于大型项目和商业应用中,就需要遵循软件工程的原则。本篇文章将探讨R语言在软件工程中的应用,主要涵盖软件开发生命周期、代码规范、版本控制、测试和文档等方面。2.软件开发生命周期软件开发生命周期(SDLC)是
- 数学:机器学习的理论基石
每天五分钟玩转人工智能
机器学习人工智能
一、数学:机器学习的理论基石机器学习是一种通过数据学习模式和规律的科学。其核心目标是从数据中提取有用的信息,以便对未知数据进行预测和分类。为了实现这一目标,机器学习需要一种数学框架来描述和解决问题。数学在机器学习中起着至关重要的作用,它提供了一种数学模型来描述数据和模式,以及一种数学方法来优化模型。数学在机器学习中的应用非常广泛,涵盖了线性代数、概率论、统计学、微积分、优化等多个领域。这些数学方法
- 基于R语言的现代贝叶斯统计学方法(贝叶斯参数估计、贝叶斯回归、贝叶斯计算实践过程
xiao5kou4chang6kai4
统计生态农业r语言回归贝叶斯统计学线性回归
专题一贝叶斯统计学的思想与概念1.1信念函数与概率1.2事件划分与贝叶斯法则1.3稀少事件的概率估计1.4可交换性1.5预测模型的构建专题二单参数模型2.1二项式模型与置信域2.2泊松模型与后验分布2.3指数族模型与共轭先验专题三蒙特卡罗逼近3.1蒙特卡罗方法3.2任意函数的后验推断3.3预测分布采样3.4后验模型检验专题四正态模型4.1均值与条件方差的推断4.2基于数学期望的先验4.3非正态分布
- 广义加性模型的参数、半参数、非参数形式
智识小站
可解释机器学习算法
简要介绍在统计学中,广义加性模型(GAM)是一种广义线性模型,其中线性响应变量线性地依赖于一些预测变量的未知光滑函数,并且人们对这些光滑函数的推理很感兴趣。GAM最初由TrevorHastie和RobertTibshirani[1]开发,用于将广义线性模型的性质与加性模型相结合。它们可以被解释为朴素贝叶斯生成模型的判别推广。该模型将一个单变量响应变量Y和一些预测变量联系起来。为Y指定指数族分布,例
- 北大数学校友胡懿娟归国任教!重回母校,专注于统计学、微生物学和遗传学的交叉领域
量子位
关注前沿科技量子位又一科学家从美归国——北大数学系校友胡懿娟。援引人民日报消息,在北京大学北京国际数学研究中心发布的2024年工作回顾中显示,她于去年7月入职北大。回来之后,她将继续专注于统计学、微生物学和遗传学的交叉领域,致力于解决实际的生物医学数据分析问题。△北大官网截图网友纷纷为她点赞:能力与颜值并存!同时也感叹,越来越多的科学家选择回到祖国,为科学技术发展和人才培养添砖加瓦。北大数学校友胡
- R语言 | vscode R plot 不弹出图形窗口,看不到图怎么办?
biomooc
Rwin10r语言vscode开发语言
原因未知。现在可以逐行执行了,但是要在浏览器查看图片:#install.packages("httpgd")library(httpgd)hgd()httpgd::hgd_url()#把输出的url复制到浏览器,查看接下来的绘图#同样打开设置面板,搜索r.plot.usehttpgd,勾选开启即可。x=seq(0,3*pi,by=0.1)plot(x,sin(x),type="l")支持拖拽改变长
- 机器学习02-发展历史补充
坐吃山猪
机器学习机器学习人工智能
机器学习02-发展历史补充文章目录机器学习02-发展历史补充1-机器学习个人理解1-初始阶段:统计学习和模式识别(20世纪50年代至80年代)2-第二阶段【集成时代】+【核方法】(20世纪90年代至2000年代初期)3-第三阶段【特征工程】+【模型优化】(2000年代中期至2010年代初期)4-大规模数据和分布式计算(2010年代中后期)5-自动化机器学习和特征选择(2010年代末至今)2-神经网
- R语言的并发编程
技术的探险家
包罗万象golang开发语言后端
R语言的并发编程引言在现代计算中,如何有效地利用计算资源进行数据处理和分析已成为一个重要的研究方向。尤其在大数据时代,数据量的急剧增加让单线程处理方式显得力不从心。为了解决这一问题,各种编程语言都开展了并发编程的研究和应用。R语言作为一种广泛应用于统计分析和数据科学的语言,也为并发编程提供了强大的支持。本文将介绍R语言的并发编程,包括其基本概念、常用包、应用示例以及实用技巧。一、并发编程基础并发编
- 行为识别的方法
人工智能专属驿站
深度学习
行为识别主要有以下几大类方法,每类方法各有特点及典型算法:传统方法特点:利用手工设计特征对行为进行表征,再用统计学习的分类方法进行识别。需一定专业知识设计特征,耗费人力物力,对复杂场景、遮挡等适应性差,但对简单背景、规则动作识别效果尚可。典型算法:时空关键点(Space-TimeInterestPoints):基于视频图像中的关键点在时空维度上的变化来提取动作特征,但可能忽略视频细节,泛化能力较弱
- R语言的计算机基础
java熊猫
包罗万象golang开发语言后端
R语言计算机基础引言R语言是一种用于数据分析、统计计算和图形显示的编程语言。它被广泛应用于统计学、数据科学、生态学、生物信息学等多个领域。由于其强大的功能和灵活性,R语言在学术界和工业界都得到了广泛的认可和应用。本文将从R语言的基本概念、数据类型、数据结构、函数、控制结构、图形绘制等方面进行介绍,帮助读者掌握R语言的基础知识。一、R语言的基本概念R语言源于新西兰的维特利大学,最初由RobertGe
- R语言的正则表达式
代码驿站520
包罗万象golang开发语言后端
R语言中的正则表达式详解引言在数据分析和处理过程中,文本数据占据着重要的角色。为了从这些文本数据中提取有价值的信息,正则表达式(RegularExpressions)便成为了一种强有力的工具。尤其是在R语言这一数据分析的强大工具中,掌握正则表达式的使用能够显著提高我们的工作效率。本文将对R语言中的正则表达式进行深入探讨,从基本概念到实际应用,力求让读者能够全面理解并运用这一技术。正则表达式的基本概
- T检验:一种通俗易懂的统计分析方法
从零开始学习人工智能
算法人工智能机器学习
摘要T检验(T-test或Student'sT-test)是统计学中用于比较两组数据均值是否存在显著差异的重要工具。本文旨在以通俗易懂的方式介绍T检验的基本概念、类型、数学公式、应用步骤及其在各个领域中的实际应用。引言在科学研究、数据分析等领域,我们经常需要评估两组数据之间的差异是否具有统计学意义。T检验正是为此目的而设计的,它基于T分布理论,通过计算样本数据的T值和P值来推断总体均数之间的差异。
- 深度学习:从基础到实践(上、下册)(安德鲁·格拉斯纳)
fyjgfyjfg
深度学习人工智能
(pdf):python33+(0m深度学习概述:深度学习是机器学习的一个分支,它试图通过使用深层神经网络来模拟人脑的学习过程。随机性与基础统计学:在深度学习中,随机性起着重要作用,了解基础统计学有助于更好地理解深度学习中的随机过程和不确定性。训练与测试:深度学习模型的训练过程包括使用训练数据来优化模型参数,而测试过程则使用测试数据来评估模型的性能。过拟合与欠拟合:过拟合是指模型在训练数据上表现过
- 6. NLP自然语言处理(Natural Language Processing)
啊波次得饿佛哥
AI人工智能自然语言处理人工智能
自然语言是指人类日常使用的语言,如中文、英语、法语等。自然语言处理是人工智能(AI)领域中的一个重要分支,它结合了计算机科学、语言学和统计学的方法,通过算法对文本和语音进行分析,使计算机能够理解、解释和生成自然语言。随着深度学习技术的发展,NLP在文本分类、机器翻译、情感分析、对话系统等任务中取得了显著进展,推动了人工智能技术在多个领域的广泛应用。自然语言处理的核心任务涉及如何使计算机理解和处理语
- 【阅读】数据之美,一本书学会可视化设计
蟹蟹蟹风流
阅读数据可视化知书达礼阅读社数据可视化
这里把《数据之美,一本书学会可视化设计》的摘抄分享下吧,图示上有不清晰的地方还请包容。你真的理解数据了吗?对原始数据了解得越多,打造的基础就越坚实,也就越可能制作成令人信服的数据图表。好的可视化设计,需要具备统计学和设计方面的知识。可视化创作是一个迭代的过程,不同的数据集迭代周期不同。由于数据代表了一定的人物、地点和事物,所以除了真实的数字之外,还有重要的背景信息。注意,垃圾信息的相对而言。一个图
- 21章5节:如何绘制三维曲面图、三维球面图和三维曲面地形图
DAT|R科学
用R探索医药数据科学信息可视化三维曲面图三维球面图三维曲面地形图
三维可视化图形在数据分析和科学研究中具有重要意义,尤其是用于展示复杂的三维数据结构。三维曲面图、三维球面图和三维曲面地形图是常见的可视化方式,它们帮助用户更直观地理解数据的分布和关系。在R语言中,plot3D包提供了多个强大的函数,如surf3D和spheresurf3D,用于绘制这些三维图形。通过这些函数,用户可以展示带有颜色编码、光照效果和不同视角的三维表面或球面,广泛应用于地形建模、数据可视
- 机器学习与深度学习间关系与区别
ℒℴѵℯ心·动ꦿ໊ོ꫞
人工智能学习深度学习python
一、机器学习概述定义机器学习(MachineLearning,ML)是一种通过数据驱动的方法,利用统计学和计算算法来训练模型,使计算机能够从数据中学习并自动进行预测或决策。机器学习通过分析大量数据样本,识别其中的模式和规律,从而对新的数据进行判断。其核心在于通过训练过程,让模型不断优化和提升其预测准确性。主要类型1.监督学习(SupervisedLearning)监督学习是指在训练数据集中包含输入
- 如何做好人生的选择题?百科全书式天才——赫伯特·西蒙给你答案
伽马有话说
赫伯特·西蒙是谁?想必知道的人非常少。但当看到他的履历后,相信没有人再怀疑他是个“天才”。西蒙出生于1916年6月15日,是个美国人,他的名字全称为赫伯特·亚历山大·西蒙,在2001年2月9日与世长辞,在这84年的岁月中,西蒙以27岁时取得的政治学博士学位为开端,先后步入了政治学、管理学、认知心理学、信息科学、人工智能、科学哲学、应用数学、统计学、运筹学、控制论、数理经济学、公共管理等领域,在这些
- 认识世界
陈陈_19b4
9月16日,雨。阅读书目:《真相》。作者:瑞典统计学家和医学教授汉斯·罗斯林,他的儿子奥拉·罗斯林,google公共数据团队的负责人。汉斯·罗斯林还是一位全球知名的教育家,是世界健康组织和联合国儿童基金会的顾问。他与儿子儿媳共同创办了Gapminder基金会,开发了Trendalyzer软件,将国际统计数据转化成交互式的生动有趣的图表,帮助人们以事实为基础来观察世界,被称为“可视化数据之父”。图片
- 【机器学习与R语言】1-机器学习简介
苹果酱0567
面试题汇总与解析java中间件开发语言springboot后端
1.基本概念机器学习:发明算法将数据转化为智能行为数据挖掘VS机器学习:前者侧重寻找有价值的信息,后者侧重执行已知的任务。后者是前者的先期准备过程:数据——>抽象化——>一般化。或者:收集数据——推理数据——归纳数据——发现规律抽象化:训练:用一个特定模型来拟合数据集的过程用方程来拟合观测的数据:观测现象——数据呈现——模型建立。通过不同的格式来把信息概念化一般化:一般化:将抽象化的知识转换成可用
- R语言标准普尔500指数Garch(1,1)模型
ronghuilin
一、例3.3标准普尔500指数的月超额收益率,从1926年开始,共792个观察值,如图所示。记rt为超额收益率,rt的样本ACF和rt2的样本PACF。在间隔为1,3时有少许序列相关性,但主要特征是平方序列显示的强烈线性相关性。例题建立garch(1,1)模型的过程:(1)应用arma(p,q)模型消除数据的线性依赖(2)在arma(p,q)模型基础上,建立garch(1,1)模型(3)改进g
- R 地图绘制-比例尺与指北针
jamesjin63
ggplot绘制mapR语言可以进行数据分析,也可以进行地图绘制,而且非常简洁,快速。虽然Arcgis基于桌面可视化操作,能够进行空间分析,但是唯一不足的就是操作步骤繁琐而且一不小心,就要从头再来,可重复性较低。这篇文章主要讲述如何利用R语言中的ggplot与sf绘制带有指北针、图列与标尺的地图屏幕快照2020-06-28下午9.27.59.png数据我们下载非洲地区54个国家的图层Afirca.
- 如何有效的学习AI大模型?
Python程序员罗宾
学习人工智能语言模型自然语言处理架构
学习AI大模型是一个系统性的过程,涉及到多个学科的知识。以下是一些建议,帮助你更有效地学习AI大模型:基础知识储备:数学基础:学习线性代数、概率论、统计学和微积分等,这些是理解机器学习算法的数学基础。编程技能:掌握至少一种编程语言,如Python,因为大多数AI模型都是用Python实现的。理论学习:机器学习基础:了解监督学习、非监督学习、强化学习等基本概念。深度学习:学习神经网络的基本结构,如卷
- 【Python・统计学】威尔科克森符号秩检验/Wilcoxon signed-rank test(原理及代码)
TUTO_TUTO
统计学pythonpython学习笔记
前言自学笔记,分享给对统计学原理不太清楚但需要在论文中用到的小伙伴,欢迎大佬们补充或绕道。ps:本文不涉及公式讲解(文科生小白友好体质)~(部分定义等来源于知乎百度等)本文重点:威尔科克森符号秩检验(英文名:Wilcoxonsigned-ranktest)【1.简单原理和步骤】【2.应用条件】【3.数据实例以及Python代码】1.简单原理和步骤威尔科克森符号秩检验是一种非参数检验的方法,需要数据
- 【Python・统计学】Kruskal-Wallis检验/H检验(原理及代码)
TUTO_TUTO
python统计学python学习笔记
前言自学笔记,分享给对统计学原理不太清楚但需要在论文中用到的小伙伴,欢迎大佬们补充或绕道。ps:本文不涉及公式讲解(文科生小白友好体质)~(部分定义等来源于知乎百度等)本文重点:Kruskal-Wallis检验(Kruskal-Wallistest),也称H检验【1.定义和简单原理】【2.应用条件】【3.数据实例以及Python代码】【4.多重比较(例:Dunn检验)】1.定义和简单原理Krusk
- 【Python・统计学】单因素方差分析(简单原理及代码)
TUTO_TUTO
统计学pythonpython学习笔记
前言自学笔记,分享给对统计学原理不太清楚但需要在论文中用到的小伙伴,欢迎大佬们补充或绕道。ps:本文不涉及公式讲解(文科生小白友好体质)~本文重点:单因素方差分析(以下:方差分析)【1.方差分析简单原理和前提条件】【2.方差分析和t检验的区别】【3.方差分析代码(配对/独立+事后检验+效应量)】1.方差分析简单原理方差分析(ANOVA)又称“变异数分析”或“F检验”,是由罗纳德·费雪爵士发明的,用
- 【统计学】参数检验和非参数检验的区别和基本统计学
TUTO_TUTO
统计学pythonpython
前言自学笔记,分享给对统计学原理不太清楚但需要在论文中用到的小伙伴,欢迎大佬们补充或绕道。ps:本文不涉及公式讲解(文科生小白友好体质)~本文重点:参数检验和非参数检验的区别以及对应的常用统计学方法(这是需要根据自己的数据类型搞清楚用哪种统计学方法的关键)【1.参数检验】【2.非参数检验】【3.参数检验和非参数检验的区别】【4.常用统计学方法】1.什么是参数和参数检验参数(parameter)的概
- 学习小组Day4笔记--王英芳
一万万万万
R语言基础准备工作电脑用户名需要是英文R基础,Rstudio人性化界面资源Rfordatasciencechapter1下载RandRstudio给自己一个全新的R语言环境R是什么一种变成语言,统计计算和绘图的环境,汇集了许多函数,强大分析功能。图形界面Rstudio开源集成开发环境IDE4个板块,脚本编辑器,控制台(脚本运行,结果显示),environment(对象/变量列表)history,文
- R语言 基础笔记
waterHBO
r语言笔记开发语言
起因:今天不知道要写什么。把之前的笔记复制一下。代码开头,导入:#清除系统变量rm(list=ls())#隐藏警告信息:options(warn=-1)#把当前目录,设置为工作目录。library(rstudioapi)current_folder_path0.0&ideology<10.0)分组聚合,类似groupby()df2<-aggregate(df1KaTeXparseerror:Exp
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>