Datawhale组队学习机器学习算法第一章

第一部分:Demo实践

Step1:函数库导入

##  基础函数库
import numpy as np 

## 导入画图库
import matplotlib.pyplot as plt
import seaborn as sns

## 导入逻辑回归模型函数
from sklearn.linear_model import LogisticRegression
##Demo演示LogisticRegression分类

## 构造数据集
x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]])
y_label = np.array([0, 0, 0, 1, 1, 1])

## 调用逻辑回归模型
lr_clf = LogisticRegression()

## 用逻辑回归模型拟合构造的数据集
lr_clf = lr_clf.fit(x_fearures, y_label) #其拟合方程为 y=w0+w1*x1+w2*x2
x_fearures #(6,2)的矩阵
array([[-1, -2],
       [-2, -1],
       [-3, -2],
       [ 1,  3],
       [ 2,  1],
       [ 3,  2]])
y_label #一维数列,代表标记值
array([0, 0, 0, 1, 1, 1])

##查看其对应模型的w
print('the weight of Logistic Regression:',lr_clf.coef_)
##查看其对应模型的w0
print('the intercept(w0) of Logistic Regression:',lr_clf.intercept_)
##the weight of Logistic Regression:[[0.73462087 0.6947908]]
##the intercept(w0) of Logistic Regression:[-0.03643213]
the weight of Logistic Regression: [[0.73455784 0.69539712]]
the intercept(w0) of Logistic Regression: [-0.13139986]
## 可视化构造的数据样本点
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')
plt.show()

Datawhale组队学习机器学习算法第一章_第1张图片

# 可视化决策边界
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')

nx, ny = 200, 100
x_min, x_max = plt.xlim()
y_min, y_max = plt.ylim()
x_grid, y_grid = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny))

z_proba = lr_clf.predict_proba(np.c_[x_grid.ravel(), y_grid.ravel()])
z_proba = z_proba[:, 1].reshape(x_grid.shape)
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()

Datawhale组队学习机器学习算法第一章_第2张图片

### 可视化预测新样本

plt.figure()
## new point 1
x_fearures_new1 = np.array([[0, -1]])
plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 1',xy=(0,-1),xytext=(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## new point 2
x_fearures_new2 = np.array([[1, 2]])
plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1], s=50, cmap='viridis')
plt.annotate(s='New point 2',xy=(1,2),xytext=(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## 训练样本
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')

# 可视化决策边界
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()

Datawhale组队学习机器学习算法第一章_第3张图片

##在训练集和测试集上分布利用训练好的模型进行预测
y_label_new1_predict=lr_clf.predict(x_fearures_new1)
y_label_new2_predict=lr_clf.predict(x_fearures_new2)
print('The New point 1 predict class:\n',y_label_new1_predict)
print('The New point 2 predict class:\n',y_label_new2_predict)
##由于逻辑回归模型是概率预测模型(前文介绍的p = p(y=1|x,\theta)),所有我们可以利用predict_proba函数预测其概率
y_label_new1_predict_proba=lr_clf.predict_proba(x_fearures_new1)
y_label_new2_predict_proba=lr_clf.predict_proba(x_fearures_new2)
print('The New point 1 predict Probability of each class:\n',y_label_new1_predict_proba)
print('The New point 2 predict Probability of each class:\n',y_label_new2_predict_proba)
##TheNewpoint1predictclass:
##[0]
##TheNewpoint2predictclass:
##[1]
##TheNewpoint1predictProbabilityofeachclass:
##[[0.695677240.30432276]]
##TheNewpoint2predictProbabilityofeachclass:
##[[0.119839360.88016064]]
The New point 1 predict class:
 [0]
The New point 2 predict class:
 [1]
The New point 1 predict Probability of each class:
 [[0.69567724 0.30432276]]
The New point 2 predict Probability of each class:
 [[0.11983936 0.88016064]]

第二部分:鸢尾花数据集逻辑回归实践

本次我们选择鸢花数据(iris)进行方法的尝试训练,该数据集一共包含5个变量,其中4个特征变量,1个目标分类变量。共有150个样本,目标变量为 花的类别 其都属于鸢尾属下的三个亚属,分别是山鸢尾 (Iris-setosa),变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。包含的三种鸢尾花的四个特征,分别是花萼长度(cm)、花萼宽度(cm)、花瓣长度(cm)、花瓣宽度(cm),这些形态特征在过去被用来识别物种。
变量 描述
sepal length 花萼长度(cm)
sepal width 花萼宽度(cm)
petal length 花瓣长度(cm)
petal width 花瓣宽度(cm)
target 鸢尾的三个亚属类别,‘setosa’(0), ‘versicolor’(1), ‘virginica’(2)

Step1:函数库导入

import pandas as pd

Step2:数据读取/载入

利用sklearn中自带的iris数据作为数据载入,并利用Pandas转化为DataFrame格式

from sklearn.datasets import load_iris
data = load_iris() #得到数据特征
iris_target = data.target #得到数据对应的标签
iris_features = pd.DataFrame(data=data.data, columns=data.feature_names)

Step3:数据信息简单查看

iris_features
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
0 5.1 3.5 1.4 0.2
1 4.9 3.0 1.4 0.2
2 4.7 3.2 1.3 0.2
3 4.6 3.1 1.5 0.2
4 5.0 3.6 1.4 0.2
... ... ... ... ...
145 6.7 3.0 5.2 2.3
146 6.3 2.5 5.0 1.9
147 6.5 3.0 5.2 2.0
148 6.2 3.4 5.4 2.3
149 5.9 3.0 5.1 1.8

150 rows × 4 columns

iris_target #其对应的类别标签为,其中0,1,2分别代表'setosa','versicolor','virginica'三种不同花的类别
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
iris_features.info()

RangeIndex: 150 entries, 0 to 149
Data columns (total 4 columns):
sepal length (cm)    150 non-null float64
sepal width (cm)     150 non-null float64
petal length (cm)    150 non-null float64
petal width (cm)     150 non-null float64
dtypes: float64(4)
memory usage: 4.8 KB
iris_features.describe()
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
count 150.000000 150.000000 150.000000 150.000000
mean 5.843333 3.057333 3.758000 1.199333
std 0.828066 0.435866 1.765298 0.762238
min 4.300000 2.000000 1.000000 0.100000
25% 5.100000 2.800000 1.600000 0.300000
50% 5.800000 3.000000 4.350000 1.300000
75% 6.400000 3.300000 5.100000 1.800000
max 7.900000 4.400000 6.900000 2.500000
iris_features.isnull() #检查缺失值
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
0 False False False False
1 False False False False
2 False False False False
3 False False False False
4 False False False False
... ... ... ... ...
145 False False False False
146 False False False False
147 False False False False
148 False False False False
149 False False False False

150 rows × 4 columns

Step4:可视化描述

## 合并标签和特征信息
iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改
iris_all['target'] = iris_target
iris_all
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target
0 5.1 3.5 1.4 0.2 0
1 4.9 3.0 1.4 0.2 0
2 4.7 3.2 1.3 0.2 0
3 4.6 3.1 1.5 0.2 0
4 5.0 3.6 1.4 0.2 0
... ... ... ... ... ...
145 6.7 3.0 5.2 2.3 2
146 6.3 2.5 5.0 1.9 2
147 6.5 3.0 5.2 2.0 2
148 6.2 3.4 5.4 2.3 2
149 5.9 3.0 5.1 1.8 2

150 rows × 5 columns

## 特征与标签组合的散点可视化
sns.pairplot(data=iris_all,  #载入数据
             diag_kind='hist',  #选择直方图
             hue= 'target')
plt.show()

Datawhale组队学习机器学习算法第一章_第4张图片

上图可以发现,在2D情况下不同的特征组合对于不同类别的花的散点分布,以及大概的区分能力。
for col in iris_features.columns:
    sns.boxplot(x='target', y=col, saturation=0.5, #为每一列绘制基于target的箱线图
palette='pastel', data=iris_all)
    plt.title(col)
    plt.show()

Datawhale组队学习机器学习算法第一章_第5张图片

Datawhale组队学习机器学习算法第一章_第6张图片
Datawhale组队学习机器学习算法第一章_第7张图片

Datawhale组队学习机器学习算法第一章_第8张图片

# 选取其前三个特征绘制三维散点图
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111, projection='3d')

iris_all_class0 = iris_all[iris_all['target']==0].values
iris_all_class1 = iris_all[iris_all['target']==1].values
iris_all_class2 = iris_all[iris_all['target']==2].values
# 'setosa'(0), 'versicolor'(1), 'virginica'(2)
ax.scatter(iris_all_class0[:,0], iris_all_class0[:,1], iris_all_class0[:,2],label='setosa')
ax.scatter(iris_all_class1[:,0], iris_all_class1[:,1], iris_all_class1[:,2],label='versicolor')
ax.scatter(iris_all_class2[:,0], iris_all_class2[:,1], iris_all_class2[:,2],label='virginica')
plt.legend()

plt.show()

Datawhale组队学习机器学习算法第一章_第9张图片

Step5:利用逻辑回归模型在二分类上进行训练和预测

##为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split
##选择其类别为0和1的样本(不包括类别为2的样本)
iris_features_part=iris_features.iloc[:100]
iris_target_part=iris_target[:100]
##测试集大小为20%,80%/20%分
x_train,x_test,y_train,y_test=train_test_split(iris_features_part, #训练数据集
                                               iris_target_part, #测试数据集
                                               test_size=0.2, #分割比例
                                               random_state=2020) #随机
##从sklearn中导入逻辑回归模型
from sklearn.linear_model import LogisticRegression
##定义逻辑回归模型
clf=LogisticRegression(random_state=0,solver='lbfgs')
##在训练集上训练逻辑回归模型
clf.fit(x_train,y_train)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, l1_ratio=None, max_iter=100,
                   multi_class='auto', n_jobs=None, penalty='l2',
                   random_state=0, solver='lbfgs', tol=0.0001, verbose=0,
                   warm_start=False)
##查看其对应的w
print('the weight of Logistic Regression:',clf.coef_)

##查看其对应的w0
print('the intercept(w0) of Logistic Regression:',clf.intercept_)
the weight of Logistic Regression: [[ 0.45181973 -0.81743611  2.14470304  0.89838607]]
the intercept(w0) of Logistic Regression: [-6.53367714]
##在训练集和测试集上分布利用训练好的模型进行预测
train_predict=clf.predict(x_train)
test_predict=clf.predict(x_test)
from sklearn import metrics
##利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

##查看混淆矩阵(预测值和真实值的各类情况统计矩阵)
confusion_matrix_result=metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

##利用热力图对于结果进行可视化
plt.figure(figsize=(8,6))
sns.heatmap(confusion_matrix_result,annot=True,cmap='Blues')
plt.xlabel('Predictedlabels')
plt.ylabel('Truelabels')
plt.show()

##The accuracy of the Logistic Regressionis:1.0
##The accuracy of the Logistic Regressionis:1.0
##The confusion matrix result:
##[[9  0]
##[0  11]]
The accuracy of the Logistic Regression is: 1.0
The accuracy of the Logistic Regression is: 1.0
The confusion matrix result:
 [[ 9  0]
 [ 0 11]]

Datawhale组队学习机器学习算法第一章_第10张图片

Step6:利用逻辑回归模型 在三分类(多分类)上进行训练和预测

##测试集大小为20%,80%/20%分
x_train,x_test,y_train,y_test=train_test_split(iris_features,iris_target,test_size=0.2,random_state=2020)
##定义逻辑回归模型
clf=LogisticRegression(random_state=0,solver='lbfgs')
##在训练集上训练逻辑回归模型
clf.fit(x_train,y_train)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, l1_ratio=None, max_iter=100,
                   multi_class='auto', n_jobs=None, penalty='l2',
                   random_state=0, solver='lbfgs', tol=0.0001, verbose=0,
                   warm_start=False)
##查看其对应的w
print('the weight of Logistic Regression:\n',clf.coef_)
##查看其对应的w0
print('the intercept(w0) of Logistic Regression:\n',clf.intercept_)
##由于这个是3分类,所有我们这里得到了三个逻辑回归模型的参数,其三个逻辑回归组合起来即可实现三分类
the weight of Logistic Regression:
 [[-0.45928925  0.83069887 -2.26606531 -0.99743981]
 [ 0.33117319 -0.72863424 -0.06841147 -0.9871103 ]
 [ 0.12811606 -0.10206464  2.33447678  1.98455011]]
the intercept(w0) of Logistic Regression:
 [  9.4388067    3.93047364 -13.36928034]
##在训练集和测试集上分布利用训练好的模型进行预测
train_predict=clf.predict(x_train)
test_predict=clf.predict(x_test)
##由于逻辑回归模型是概率预测模型(前文介绍的p=p(y=1|x,\theta)),所有我们可以利用predict_proba函数预测其概率

train_predict_proba=clf.predict_proba(x_train)
test_predict_proba=clf.predict_proba(x_test)

print('The test predict Probability of each class:\n',test_predict_proba)
##其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。

##利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))
The test predict Probability of each class:
 [[1.03461737e-05 2.33279477e-02 9.76661706e-01]
 [9.69926591e-01 3.00732874e-02 1.21677000e-07]
 [2.09992549e-02 8.69156616e-01 1.09844129e-01]
 [3.61934872e-03 7.91979966e-01 2.04400686e-01]
 [7.90943209e-03 8.00605299e-01 1.91485269e-01]
 [7.30034956e-04 6.60508053e-01 3.38761912e-01]
 [1.68614211e-04 1.86322045e-01 8.13509341e-01]
 [1.06915331e-01 8.90815532e-01 2.26913671e-03]
 [9.46928071e-01 5.30707288e-02 1.20016060e-06]
 [9.62346385e-01 3.76532228e-02 3.91897297e-07]
 [1.19533386e-04 1.38823469e-01 8.61056998e-01]
 [8.78881880e-03 6.97207359e-01 2.94003822e-01]
 [9.73938143e-01 2.60617342e-02 1.22613839e-07]
 [1.78434056e-03 4.79518177e-01 5.18697483e-01]
 [5.56924345e-04 2.46776840e-01 7.52666235e-01]
 [9.83549842e-01 1.64500666e-02 9.13617272e-08]
 [1.65201476e-02 9.54672748e-01 2.88071041e-02]
 [8.99853722e-03 7.82707575e-01 2.08293888e-01]
 [2.98015029e-05 5.45900069e-02 9.45380192e-01]
 [9.35695863e-01 6.43039522e-02 1.85301368e-07]
 [9.80621190e-01 1.93787398e-02 7.00125265e-08]
 [1.68478817e-04 3.30167227e-01 6.69664294e-01]
 [3.54046168e-03 4.02267804e-01 5.94191734e-01]
 [9.70617284e-01 2.93824735e-02 2.42443971e-07]
 [2.56895209e-04 1.54631583e-01 8.45111521e-01]
 [3.48668493e-02 9.11966140e-01 5.31670110e-02]
 [1.47218849e-02 6.84038113e-01 3.01240002e-01]
 [9.46510460e-04 4.28641987e-01 5.70411502e-01]
 [9.64848137e-01 3.51516747e-02 1.87917886e-07]
 [9.70436779e-01 2.95624021e-02 8.18591621e-07]]
The accuracy of the Logistic Regression is: 0.9833333333333333
The accuracy of the Logistic Regression is: 0.8666666666666667
##查看混淆矩阵
confusion_matrix_result=metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

##利用热力图对于结果进行可视化
plt.figure(figsize=(8,6))
sns.heatmap(confusion_matrix_result,annot=True,cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

##The confusion matrix result:
##[[10  0   0]
##[0   8   2] 
##[0   2   8]]
The confusion matrix result:
 [[10  0  0]
 [ 0  8  2]
 [ 0  2  8]]

Datawhale组队学习机器学习算法第一章_第11张图片

逻辑回归原理

当z≥0 时,y≥0.5,分类为1,当 z<0时,y<0.5,分类为0,其对应的y值我们可以视为类别1的概率预测值。Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为:
x = np.arange(-5,5,0.01)
y = 1/(1+np.exp(-x))

plt.plot(x,y)
plt.xlabel('z')
plt.ylabel('y')
plt.grid()
plt.show()

Datawhale组队学习机器学习算法第一章_第12张图片

通过上图我们可以发现 Logistic 函数是单调递增函数,并且在z=0,而回归的基本方程:

1

将回归方程写入其中为:

2

所以,

3

逻辑回归从其原理上来说,逻辑回归其实是实现了一个决策边界:对于函数,当z≥0 时,y≥0.5,分类为1,当 z<0时,y<0.5,分类为0,其对应的y值我们可以视为类别1的概率预测值。
对于模型的训练而言:实质上来说就是利用数据求解出对应的模型的特定的ω。从而得到一个针对于当前数据的特征逻辑回归模型。
而对于多分类而言,将多个二分类的逻辑回归组合,即可实现多分类。

你可能感兴趣的:(组队学习,机器学习,python,人工智能,数据挖掘)