整理的算法模板合集: ACM模板
时间复杂度为 O ( n m f ) O(nmf) O(nmf), f f f 为最大流量, 效率较高,一般不会被卡
#include
#include
#include
#include
#include
using namespace std;
typedef long long ll;
namespace dinic{//MCMF
const int N = 1e5 + 7, M = 2e6 + 7;
const ll INF = 0x3f3f3f3f3f;//!因为是long long 所以是五个3f
int n, S, T;
int head[N], ver[M], nex[M], tot, cur[N];
ll dist[N], edge[M], cost[M], maxflow, mincost;
bool vis[N];
inline void add(int x, int y, ll z, ll c, bool o = 1){
ver[tot] = y;
edge[tot] = z;
cost[tot] = c;
nex[tot] = head[x];
head[x] = tot ++ ;
if(o)add(y, x, 0, -c, 0);
}
inline bool spfa(){//对费用 cost 求最短路
//memset(dist, 0x3f, sizeof dist);//!0x3f3f3f3f3f -> 3f x 5
for(int i = 1;i <= n; ++ i)dist[i] = INF;
memset(vis, 0, sizeof vis);
queue<int>q;
q.push(S);
dist[S] = 0;
vis[S] = 1;
while(q.size()){
int x = q.front();
q.pop();
vis[x] = 0;
for(int i = head[x]; ~i; i = nex[i]){
int y = ver[i];
ll z = edge[i], c = cost[i];
if(dist[y] <= dist[x] + c || !z)continue;
dist[y] = dist[x] + c;
if(!vis[y])
q.push(y), vis[y] = 1;
}
}
return dist[T] != INF;
}
ll dfs(int x, ll flow = INF){
if(x == T)return flow;
ll ans = 0, k, i;
vis[x] = 1;
for(i = cur[x]; ~i && flow; i = nex[i]){
cur[x] = i;
int y = ver[i];
ll z = edge[i], c = cost[i];
if(!z || (dist[y] != dist[x] + c) || vis[y])continue;
k = dfs(y, min(flow, z));
if(!k)dist[y] = INF;
edge[i] -= k;
edge[i ^ 1] += k;
ans += k, mincost += k * c, flow -= k;
}
vis[x] = 0;
return ans;
}
inline void main(){
while(spfa()){
for(int i = 1; i <= n; ++ i)
cur[i] = head[i];
//memcpy(cur, head, sizeof head);
ll now;
while((now = dfs(S)))maxflow += now;//!
}
}
inline void init(int _n, int _S, int _T){
n = _n, S = _S, T = _T, tot = 0, maxflow = 0, mincost = 0;
memset(head, -1, sizeof head);
}
}
int n, m, S, T;
int main(){
scanf("%d%d%d%d", &n, &m, &S, &T);
dinic::init(n, S, T);
for(int i = 1; i <= m; ++ i){
int x, y;
ll z, c;
scanf("%d%d%lld%lld", &x, &y, &z, &c);
dinic::add(x, y, z, c, 1);
}
dinic::main();
printf("%lld %lld\n", dinic::maxflow, dinic::mincost);
return 0;
}
类似最大流解决二分图多重匹配,每条边的权值就是他的单位费用。
给定一个 n×n 的矩阵,每一格有一个非负整数 ai,j。现在从 (1,1) 出发,可以往右或者往下走,最后到达
(n,n)。每到达一格,把该格子的数取出来,该格子的数就变成 0。这样一共走 k 次,现在要求 k 次所达到的方格的数的和最大。
const ll INF = 1e18;
const int N = 5e3+7, M = 5e5+7;
int maxflow,s,t,k;
int n,m,ans,e;
int head[N],ver[M],nex[M],edge[M],cost[M],tot;
bool vis[N];
int dis[N],incf[N],pre[N];
void add(int x,int y,int z,int c){//正边反边
ver[++tot] = y;edge[tot] = z;cost[tot] = c;
nex[tot] = head[x];head[x] = tot;
ver[++tot] = x;edge[tot] = 0;cost[tot] = -c;
nex[tot] = head[y];head[y] = tot;
}
int num(int i,int j,int k){
return (i - 1) * n + j + k * n * n;
}
bool spfa(){//spfa求最长路
queue<int>q;
memset(vis,0,sizeof vis);
memset(dis,0xcf,sizeof dis);//-INF
q.push(s);
dis[s] = 0;vis[s] = 1;
incf[s] = 1<<30;//增广路各边的最小剩余容量
while(q.size()){
int x = q.front();q.pop();
vis[x] = 0;//spfa的操作
for(int i = head[x];i;i = nex[i]){
if(edge[i]){//剩余容量要>0,才在残余网络中
int y = ver[i];
if(dis[y] < dis[x] + cost[i]){
dis[y] = dis[x] + cost[i];
incf[y] = min(incf[x],edge[i]);//最小剩余容量
pre[y] = i;//记录前驱(前向星编号),方便找到最长路的实际方案
if(!vis[y])
vis[y] = 1,q.push(y);
}
}
}
}
if(dis[t] == 0xcfcfcfcf)
return false;//汇点不可达,已求出最大流
return true;
}
//EK的老操作了,更新最长增广路及其反向边的剩余容量
void update(){
int x = t;
while(x != s){
int i = pre[x];
edge[i] -= incf[t];
edge[i ^ 1] += incf[t];//成对变换,反边加
x = ver[i ^ 1];//反边回去的地方就是上一个结点
}
maxflow += incf[t];//顺便求最大流
ans += dis[t] * incf[t];//题目要求
}
void EK(){
while(spfa())//疯狂找增广路
update();
}
int main(){
cin>>n>>k;
s = 1;t = 2 * n * n;
tot = 1;
over(i,1,n)
over(j,1,n){
int c;
scanf("%d",&c);
add(num(i,j,0),num(i,j,1),1,c);//自己(入点0)与自己(出点1)
add(num(i,j,0),num(i,j,1),k-1,0);//两条边(取k次嘛,第一次有值,以后就没值了,用作下次选取)
if(i < n)add(num(i,j,1),num(i+1,j,0),k,0);//自己(出点1)与下一行(入点0)或者下一列(入点0)
if(j < n)add(num(i,j,1),num(i,j+1,0),k,0);
}
EK();
printf("%d\n",ans);
return 0;
}