7-4 Cartesian Tree (30分)
A Cartesian tree is a binary tree constructed from a sequence of distinct numbers. The tree is heap-ordered, and an inorder traversal returns the original sequence. For example, given the sequence { 8, 15, 3, 4, 1, 5, 12, 10, 18, 6 }, the min-heap Cartesian tree is shown by the figure.
Your job is to output the level-order traversal sequence of the min-heap Cartesian tree.
Input Specification:
Each input file contains one test case. Each case starts from giving a positive integer N (≤30), and then N distinct numbers in the next line, separated by a space. All the numbers are in the range of int.
Output Specification:
For each test case, print in a line the level-order traversal sequence of the min-heap Cartesian tree. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the beginning or the end of the line.
Sample Input:
10
8 15 3 4 1 5 12 10 18 6
Sample Output:
1 3 5 8 4 6 15 10 12 18
给定一个二叉最小堆(Cartesian Tree)的中序序列,输出层序遍历序列。
1.给出的是个min-heap
最小堆,即所有父节点不大于子节点的二叉树。如果找到了目前区间的最小值,那就是个父节点。
2.给出的顺序是inorder
中序,也就是LNR。是不是想到了递归和分而治之的老方法了?
3.输出的顺序是level-order
层序。如果不建树,就是开个大数组,按照下标放;如果建树,就得用BFS遍历树了。
没有说是哪种二叉树,如果是最极端的那种,就是每行只有一个节点,画个草图就是:
4是3的左孩子,3是2的左孩子,2是1的左孩子。
题目说最多30个节点,如果不建树那得需要2的30次方那么大的数组了,那会遇到编译不通过。所以这道题还得建树。
改变节点的数量和二叉树的内部结构。不过这道题本身是没啥坑的。
//输入1
8
60 58 38 52 8 82 25 70
//输出1
8 38 25 58 52 82 70 60
//输入2
13
8 4 2 9 5 10 1 11 6 12 3 7 13
//输出2
1 2 3 4 5 6 7 8 9 10 11 12 13
#include
#include
using namespace std;
int n,k;
vector<int> v;
struct tree{
int data;
tree *l,*r;
}*T;
tree* check(int low,int high){
if(low<0||low>high)return NULL;
tree *t=new tree;
int minn=low;
for(int j=low;j<=high;j++){
if(v[minn]>v[j])minn=j;
}
t->data=v[minn];
t->l=check(low,minn-1);
t->r=check(minn+1,high);
return t;
}
int main(){
scanf("%d",&n);
for(int i=0;i<n;i++){
scanf("%d",&k);
v.push_back(k);
}
T=check(0,n-1);
int flag=0;
queue<tree*> q;
q.push(T);
while(!q.empty()){
tree *t=q.front();
if(flag==1)cout<<" ";
else flag=1;
cout<<t->data;
if(t->l)q.push(t->l);
if(t->r)q.push(t->r);
q.pop();
}
return 0;
}