1.创建一个实例用于数据存储
case class SensorReading(id: String, timestamp: Long, temperrture: Double)
object SourceDemo {
def main(args: Array[String]): Unit = {
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
//1.从数组中读取数据
val dataStream1: DataStream[SensorReading] = env.fromCollection(List(
SensorReading("Test_1", 154789, 35.1547924),
SensorReading("Test_2", 164789, 38.1547924),
SensorReading("Test_3", 184789, 25.1547924),
SensorReading("Test_4", 154789, 45.1547924)
))
dataSet.print("dataStream1").setParallelism(1)
env.execute("Execute SouceDemo")
}
}
//2.文件中读取数据
val dataStream2: DataStream[String] = env.readTextFile("E:\\Vocaboly\\ideaIU\\IDEAJOB\\flinkdemo\\src\\main\\resources\\sensor.txt")
dataSet2.print("dataSet2").setParallelism(1)
启动kakfa并创建一个topic first
在topic first创建一个生产者
//3.从kafka中读取数据
val properties = new Properties()
properties.setProperty("bootstrap.servers", "hdp-1:9092")
properties.setProperty("group.id", "consumer-group")
properties.setProperty("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
properties.setProperty("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")
properties.setProperty("auto.offset.reset", "latest")
val dataStream3: DataStream[String] = env.addSource(new FlinkKafkaConsumer[String]("first", new SimpleStringSchema(), properties))
dataStream3.print("dataStream3").setParallelism(1)
//自定义Source
class SensorSource() extends SourceFunction[SensorReading]{
//定义一个flag,表示数据源是否正常运行
var running: Boolean = true
//正常生成数据
override def run(sourceContext: SourceFunction.SourceContext[SensorReading]): Unit = {
//初始化一个随机数生成器
val rand = new Random()
//初始化数据
var curTemp = 1.to(10).map(
i => ("Sensor_" + i, 60 + rand.nextGaussian() * 20)
)
//产生数据
while(running){
curTemp.map(
t => (t._1, t._2 + rand.nextGaussian())
)
//获取当前时间
val curTime: Long = System.currentTimeMillis()
curTemp.foreach(
t => sourceContext.collect(SensorReading(t._1, curTime, t._2))
)
//设置休眠时间
Thread.sleep(500)
}
}
//取消数据源的生成
override def cancel(): Unit = {
return false
}
}
读取自定义Source中随机生成的数据
//4.自定义Source
val dataStream4: DataStream[SensorReading] = env.addSource(new SensorSource())
dataStream4.print("dataStream4").setParallelism(1)
env.execute("Execute SouceDemo")