- ECC:创建供应商vmd_ei_api=>maintain_bapi
SAP.单刀赴会
ABAP学习ECC创建供应商
FUNCTIONzmd_creat_lifnr.*"----------------------------------------------------------------------*"*"局部接口:*"IMPORTING*"VALUE(IT_MD017)TYPEZPIDT_MD017_BODY_TAB*"EXPORTING*"VALUE(EV_TYPE)TYPEBAPI_MTYPE*"
- VMD插件—DensityCalculator:计算模拟轨迹的粒子密度分布图
咸鱼啦啦
经验分享开发语言材料工程
一、DensityCalculator简介“在分子动力学(MD)模拟中,原子级的结构信息表征是材料建模和模拟领域研究人员的一项必要任务。密度分布的可视化通常是结构表征中最重要的属性之一。VisualMolecularDynamics(VMD)是一种广泛使用的分子可视化程序包,它不仅可以可视化复杂的分子系统,还可以通过集成特殊插件或运行内部生成的TCL脚本来执行分析。但是,密度分析仍不是VMD的内置
- 蛋白质口袋预测算法——fpocket
WallBreaker_NBL
CADD算法python健康医疗linux开源软件
fpocket还允许在MD轨迹上进行口袋检测,适合结合口袋特征的评分函数的开发,并对结合点的可药性进行评估。安装命令:>>>tar-xzffpocket-src-2.0.tgz>>>cdfpocket-src-2.0/>>>make>>>maketest事先需安装VMD和PyMOL。fpocket使用样例:fpocket-fsample/3LKF.pdbdpocket可以对多个结构进行分析,tpo
- VMD(变分模态分解)详解
DuHz
波的分析方法现代谱分析方法音频处理数据挖掘信号处理人工智能信息与通信数学建模
VMD(变分模态分解)详解目录前言背景及发展VMD原理与数学基础问题的提出变分框架与能量最小化中心频率与带宽定义目标函数及约束拉格朗日乘子法频域迭代更新公式VMD与EMD/EEMD/CEEMDAN等方法比较VMD算法流程主要参数的选择与影响优点与不足实际应用中需要注意的问题示例代码代码简要解读参考资料前言在信号处理、时频分析、故障诊断等诸多领域,如何将一个复杂信号进行多分量分解,进而提取到其中所包
- Time-LLM :超越了现有时间序列预测模型的学习器
福安德信息科技
AI预测大模型学习人工智能python大模型时序预测
AI预测相关目录AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容最好有基础的python算法预测经验EEMD策略及踩坑VMD-CNN-LSTM时序预测对双向LSTM等模型添加自注意力机制K折叠交叉验证optuna超参数优化框架多任务学习-模型融合策略Transformer模型及Paddle实现迁移学习在预测任务上的tensoflow2.0实现holt提取时序序列特征TCN时
- 数据分析-24-时间序列预测之基于keras的VMD-LSTM和VMD-CNN-LSTM预测风速
皮皮冰燃
数据分析数据分析
文章目录1普通的LSTM模型1.1数据重采样1.2数据标准化1.3切分窗口1.4划分数据集1.5建立模型1.6预测效果2VMD-LSTM模型2.1VMD分解时间序列2.2对每一个IMF建立LSTM模型2.2.1IMF1—LSTM2.2.2IMF2-LSTM2.2.3统一代码2.3评估效果3CNN-LSTM模型3.1数据预处理3.2建立模型3.3效果预测4VMD-CNN-LSTM模型4.1VMD分解
- 时序预测|基于变分模态分解-时域卷积-双向长短期记忆-注意力机制多变量时间序列预测VMD-TCN-BiLSTM-Attention
机器不会学习CL
时间序列预测智能优化算法深度学习人工智能机器学习
时序预测|基于变分模态分解-时域卷积-双向长短期记忆-注意力机制多变量时间序列预测VMD-TCN-BiLSTM-Attention文章目录前言时序预测|基于变分模态分解-时域卷积-双向长短期记忆-注意力机制多变量时间序列预测VMD-TCN-BiLSTM-Attention一、VMD-TCN-BiLSTM-Attention模型VMD-TCN-BiLSTM-Attention模型的详细原理和流程1.
- 多维时序 | Matlab实现基于VMD-DBO-LSTM、VMD-LSTM、LSTM的多变量时间序列预测
机器学习之心
时序预测VMD-DBO-LSTM多变量时间序列预测VMD-LSTMLSTM
多维时序|Matlab实现基于VMD-DBO-LSTM、VMD-LSTM、LSTM的多变量时间序列预测目录多维时序|Matlab实现基于VMD-DBO-LSTM、VMD-LSTM、LSTM的多变量时间序列预测预测效果基本介绍程序设计参考资料预测效果基本介绍Matlab实现基于VMD-DBO-LSTM、VMD-LSTM、LSTM的多变量时间序列预测(完整程序和数据)1.先运行vmdtest,进行vm
- 【代码分享】基于VMD(变分模态分解)-RIME(霜冰算法优化)-LSTM的时间序列预测模型
电力系统爱好者
算法lstm人工智能
程序名称:基于VMD(变分模态分解)-RIME(霜冰算法优化)-LSTM的时间序列预测模型实现平台:matlab代码简介:提出了变分模态分解(VMD)和霜冰算法优化法(RIME)与长短期记忆神经网络(LSTM)相耦合,建立了时间序列预测模型(VMD-RIME-LSTM)。变分模态分解(VariationalModeDecomposition,简称VMD)是一种信号分解方法,可以将复杂的信号分解为多
- Android开发--实时监测系统+部署故障诊断算法
Afison
Android故障诊断C/C++android
0.项目整体思路介绍:搭建无人装备模拟实验平台,使用采集器对数据进行采集,通过网络通信Udp协议发送到安卓端,安卓端作界面显示,算法使用matlab仿真后,用C语言实现。将采集器采集到的数据经过处理后训练,并将算法模型集成到服务器端或嵌入到安卓软件中。1.系统整体架构2.实验平台搭建模拟旋转机械设备等传感器采集器3.算法设计优化VMD-SVM算法预测结果展示4.安卓端界面开发安卓界面端展示
- AI预测-注意力机制/多头注意力机制及其tensorflow实现
写代码的中青年
AI预测人工智能tensorflowpython深度学习keras
AI预测相关目录AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容最好有基础的python算法预测经验EEMD策略及踩坑VMD-CNN-LSTM时序预测对双向LSTM等模型添加自注意力机制K折叠交叉验证optuna超参数优化框架多任务学习-模型融合策略Transformer模型及Paddle实现迁移学习在预测任务上的tensoflow2.0实现holt提取时序序列特征TCN时
- AI预测-多任务学习-模型融合策略
写代码的中青年
AI预测人工智能学习python神经网络深度学习
AI预测相关目录AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容最好有基础的python算法预测经验EEMD策略及踩坑VMD-CNN-LSTM时序预测对双向LSTM等模型添加自注意力机制K折叠交叉验证optuna超参数优化框架多任务学习-模型融合测略文章目录AI预测相关目录一、模型融合二、模型介绍三、代码示例总结一、模型融合模型融合是自创概念,实际上是对多任务学习一直情况的
- AI预测-Transformer模型及Paddle实现
写代码的中青年
AI预测人工智能transformerpaddle深度学习神经网络
AI预测相关目录AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容最好有基础的python算法预测经验EEMD策略及踩坑VMD-CNN-LSTM时序预测对双向LSTM等模型添加自注意力机制K折叠交叉验证optuna超参数优化框架多任务学习-模型融合测略Transformer模型及Paddle实现文章目录AI预测相关目录一、Transformer背景二、多头注意力机制三、Pad
- AI预测-迁移学习在时序预测任务上的tensoflow2.0实现
写代码的中青年
AI预测人工智能迁移学习机器学习神经网络pythontensorflow
AI预测相关目录AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容最好有基础的python算法预测经验EEMD策略及踩坑VMD-CNN-LSTM时序预测对双向LSTM等模型添加自注意力机制K折叠交叉验证optuna超参数优化框架多任务学习-模型融合策略Transformer模型及Paddle实现迁移学习在预测任务上的tensoflow2.0实现文章目录AI预测相关目录一、迁移
- AI预测-VMD-CNN-LSTM时序预测
写代码的中青年
AI预测人工智能cnnlstm
AI预测相关目录AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容最好有基础的python算法预测经验EEMD策略及踩坑VMD-CNN-LSTM时序预测文章目录AI预测相关目录一、VMD介绍二、CNN-LSTM三、VMD与CNN-LSTM的适配性1.VMD2.cnn-lstm总结一、VMD介绍VMD(变分模态分解)是一种信号处理技术,用于将复杂的非线性或非平稳信号分解成多个模
- EI级 |VMD-TCN-GRU变分模态分解结合时间卷积门控循环单元多变量光伏功率时间序列预测 Matlab实现
机器学习之芯
预测模型grumatlab深度学习
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍摘要本文提出了一种新的时序预测算法,称为VMD-TCN-GRU算法。该算法将变分模态分解(VMD)与时
- VMD渲染高清图片
薛定谔的青蛙
前端
使用snapshot直接渲染的图片分辨率太低了,放大后糊成一团:改用tachyon渲染可以解决这个问题:渲染完成后会生成一个.dat的文本文件,之后使用vmd自带的tachyon_WIN32.exe将dat文件渲染为高清图片。注意某些beta版本的vmd可以可能没有tachyon_WIN32.exe。之后在tachyon_WIN32.exe目录下新建一个.bat文本,写入以下内容:tachyon_
- vmd氢键分析
薛定谔的青蛙
lammps分子动力学学习
1.氢键介绍氢原子与电负性大的原子X以共价键结合,若与电负性大、半径小的原子Y(OFN等)接近,在X与Y之间以氢为媒介,生成X-H…Y形式的一种特殊的分子间或分子内相互作用,称为氢键。当然X与Y可以是同一种类分子,如水分子之间的氢键;也可以是不同种类分子,如一水合氨分子(NH3·H2O)之间的氢键。氢键的本质就是强极性键(A-H)上的氢核与电负性很大的、含孤电子对并带有部分负电荷的原子B之间的静电
- 通过DBeaver连接Phoenix操作hbase
风静花犹落
下载DBeaverhttps://dbeaver.io/download配置JDK(可选)编辑DBeaver安装目录下DBeaver.ini文件,在首行添加JDK安装路径-vmD:\ProgramFiles\jdk\bin连接HBase1.配置文件>新建>数据库连接>ApachePhoenix>填写相应的host,port,username,password信息2.驱动文件自动下载驱动编辑驱动设置
- 机器学习算法实战案例:VMD-LSTM实现单变量多步光伏预测(升级版)
Python算法实战
机器学习算法实战机器学习算法lstm人工智能python
文章目录机器学习算法实战案例系列答疑&技术交流1数据处理1.1导入库文件1.2导入数据集1.3缺失值分析2VMD经验模态分解2.1VMD分解实验2.2VMD-LSTM预测思路3构造训练数据4LSTM模型训练5LSTM模型预测5.1分量预测5.2可视化机器学习算法实战案例系列机器学习算法实战案例:确实可以封神了,时间序列预测算法最全总结!机器学习算法实战案例:时间序列数据最全的预处理方法总结机器学习
- 机器学习算法实战案例:VMD-LSTM实现单变量多步光伏预测
Python算法实战
机器学习算法实战机器学习算法lstm人工智能
文章目录机器学习算法实战案例系列答疑&技术交流1数据处理1.1导入库文件1.2导入数据集1.3缺失值分析2VMD经验模态分解3构造训练数据4LSTM模型训练5预测机器学习算法实战案例系列机器学习算法实战案例:确实可以封神了,时间序列预测算法最全总结!机器学习算法实战案例:时间序列数据最全的预处理方法总结机器学习算法实战案例:GRU实现多变量多步光伏预测机器学习算法实战案例:LSTM实现单变量滚动风
- 【MATLAB】tvf_emd_LSTM神经网络时序预测算法
Lwcah
MATLAB时序预测算法神经网络matlablstm
有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~1基本定义TVF-EMD-LSTM神经网络时序预测算法是一种结合了变分模态分解(VariationalModeDecomposition,VMD)、经验模态分解(EmpiricalModeDecomposition,EMD)和长短期记忆神经网络(LSTM)的时间序列预测方法。VMD是一种自适应信号分解方法,能够将复杂信号分解为多个固有模
- matlab|基于VMD-SSA-LSTM的多维时序光伏功率预测
科研工作站
预测matlablstm麻雀搜索算法变分模态分析长短期记忆网络
目录1主要内容变分模态分解(VMD)麻雀搜索算法SSA长短期记忆网络LSTM2部分代码3程序结果4下载链接1主要内容之前分享了预测的程序基于LSTM的负荷和可再生能源出力预测【核心部分复现】,该程序预测效果比较好,并且结构比较清晰,但是仍然有同学咨询混合算法的预测,本次分享基于VMD-SSA-LSTM的多维时序光伏功率预测,本程序参考文章《基于VMD-SSA-LSSVM的短期风电预测》和《基于改进
- Python轴承故障诊断 (11)基于VMD+CNN-BiGRU-Attenion的故障分类
建模先锋
信号处理pythoncnn分类
目录往期精彩内容:前言模型整体结构1变分模态分解VMD的Python示例2轴承故障数据的预处理2.1导入数据2.2故障VMD分解可视化2.3故障数据的VMD分解预处理3基于VMD-CNN-BiGRU-Attenion的轴承故障诊断分类3.1定义VMD-CNN-BiGRU-Attenion分类网络模型3.2设置参数,训练模型3.3模型评估代码、数据如下:往期精彩内容:Python-凯斯西储大学(CW
- 时序预测 | GJO-VMD-LSTM金豺-变分模态分解-长短期记忆网络时间序列预测Matlab实现
机器学习之芯
预测模型lstm网络matlab
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍摘要风电作为一种清洁可再生能源,在全球能源结构中发挥着越来越重要的作用。然而,风电具有随机性和波动性,
- 时序预测|基于变模态分解结合VMD-ARIMA实现时间序列数据预测
Matlab科研辅导帮
预测模型matlab
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍近年来,随着数据科学和人工智能技术的迅猛发展,时序预测在各个领域中变得越来越重要。在金融、气象、交通等
- GJO-VMD-LSTM时序预测 | Matlab实现金豺-变分模态分解-长短期记忆网络时间序列预测
前程算法matlab屋
预测模型lstmmatlab网络
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍摘要风电作为一种清洁可再生能源,在全球能源结构中发挥着越来越重要的作用。然而,风电具有随机性和波动性,
- EI级 | Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测
机器学习之心
时序预测VMD-TCN-BiLSTMTCN-BiLSTM变分模态分解时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测
EI级|Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测目录EI级|Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测预测效果基本介绍程序设计参考资料预测效果基本介绍1.【EI级】Matlab实现VMD-TCN-BiLSTM多变量时间序列预测(光伏功率数据);Mat
- ASP.NET Core 2.1:将VMD.RESTApiResponseWrapper.Core集成到REST API应用程序
寒冰屋
架构及框架ASP.NETCOREASP.NETCore2.1RESTAPI
目录介绍开始模型模拟数据创建一个API控制器测试输出只需3个简单步骤即可集成VMD.RESTApiResponseWrapper.Core库!第1步第2步第三步启用自定义响应GETPOSTPUTDELETE实现模型验证使用数据注释验证使用Fluent验证处理自定义错误和异常启用Swagger总结下载源代码82.2KB介绍几个月前,我写了一篇关于如何为ASP.NETCore和WebAPI应用程序创建
- 负荷预测 | Python基于CEEMDAN-VMD-BiGRU的短期电力负荷时间序列预测
机器学习之心
专题预测CEEMDANVMD-BiGRU短期电力负荷时间序列预测
目录效果一览基本介绍程序设计参考资料效果一览基本介绍提出一种分解去噪、重构分解的CEEMDAN-VMD-BiGRU组合预测方法:1采用CEEMDAN将原始电力负荷数据分解成一组比较稳定的子序列,联合小波阈值法将含有噪声的高频分量去噪,保留含有信号的低频分量进行累加重构2利用VMD对去噪后的数据进行二次信号特征提取,得到一组平稳性强且含不同频率的分量3利用双向循环神经网络(Bidirectional
- java解析APK
3213213333332132
javaapklinux解析APK
解析apk有两种方法
1、结合安卓提供apktool工具,用java执行cmd解析命令获取apk信息
2、利用相关jar包里的集成方法解析apk
这里只给出第二种方法,因为第一种方法在linux服务器下会出现不在控制范围之内的结果。
public class ApkUtil
{
/**
* 日志对象
*/
private static Logger
- nginx自定义ip访问N种方法
ronin47
nginx 禁止ip访问
因业务需要,禁止一部分内网访问接口, 由于前端架了F5,直接用deny或allow是不行的,这是因为直接获取的前端F5的地址。
所以开始思考有哪些主案可以实现这样的需求,目前可实施的是三种:
一:把ip段放在redis里,写一段lua
二:利用geo传递变量,写一段
- mysql timestamp类型字段的CURRENT_TIMESTAMP与ON UPDATE CURRENT_TIMESTAMP属性
dcj3sjt126com
mysql
timestamp有两个属性,分别是CURRENT_TIMESTAMP 和ON UPDATE CURRENT_TIMESTAMP两种,使用情况分别如下:
1.
CURRENT_TIMESTAMP
当要向数据库执行insert操作时,如果有个timestamp字段属性设为
CURRENT_TIMESTAMP,则无论这
- struts2+spring+hibernate分页显示
171815164
Hibernate
分页显示一直是web开发中一大烦琐的难题,传统的网页设计只在一个JSP或者ASP页面中书写所有关于数据库操作的代码,那样做分页可能简单一点,但当把网站分层开发后,分页就比较困难了,下面是我做Spring+Hibernate+Struts2项目时设计的分页代码,与大家分享交流。
1、DAO层接口的设计,在MemberDao接口中定义了如下两个方法:
public in
- 构建自己的Wrapper应用
g21121
rap
我们已经了解Wrapper的目录结构,下面可是正式利用Wrapper来包装我们自己的应用,这里假设Wrapper的安装目录为:/usr/local/wrapper。
首先,创建项目应用
&nb
- [简单]工作记录_多线程相关
53873039oycg
多线程
最近遇到多线程的问题,原来使用异步请求多个接口(n*3次请求) 方案一 使用多线程一次返回数据,最开始是使用5个线程,一个线程顺序请求3个接口,超时终止返回 缺点 测试发现必须3个接
- 调试jdk中的源码,查看jdk局部变量
程序员是怎么炼成的
jdk 源码
转自:http://www.douban.com/note/211369821/
学习jdk源码时使用--
学习java最好的办法就是看jdk源代码,面对浩瀚的jdk(光源码就有40M多,比一个大型网站的源码都多)从何入手呢,要是能单步调试跟进到jdk源码里并且能查看其中的局部变量最好了。
可惜的是sun提供的jdk并不能查看运行中的局部变量
- Oracle RAC Failover 详解
aijuans
oracle
Oracle RAC 同时具备HA(High Availiablity) 和LB(LoadBalance). 而其高可用性的基础就是Failover(故障转移). 它指集群中任何一个节点的故障都不会影响用户的使用,连接到故障节点的用户会被自动转移到健康节点,从用户感受而言, 是感觉不到这种切换。
Oracle 10g RAC 的Failover 可以分为3种:
1. Client-Si
- form表单提交数据编码方式及tomcat的接受编码方式
antonyup_2006
JavaScripttomcat浏览器互联网servlet
原帖地址:http://www.iteye.com/topic/266705
form有2中方法把数据提交给服务器,get和post,分别说下吧。
(一)get提交
1.首先说下客户端(浏览器)的form表单用get方法是如何将数据编码后提交给服务器端的吧。
对于get方法来说,都是把数据串联在请求的url后面作为参数,如:http://localhost:
- JS初学者必知的基础
百合不是茶
js函数js入门基础
JavaScript是网页的交互语言,实现网页的各种效果,
JavaScript 是世界上最流行的脚本语言。
JavaScript 是属于 web 的语言,它适用于 PC、笔记本电脑、平板电脑和移动电话。
JavaScript 被设计为向 HTML 页面增加交互性。
许多 HTML 开发者都不是程序员,但是 JavaScript 却拥有非常简单的语法。几乎每个人都有能力将小的
- iBatis的分页分析与详解
bijian1013
javaibatis
分页是操作数据库型系统常遇到的问题。分页实现方法很多,但效率的差异就很大了。iBatis是通过什么方式来实现这个分页的了。查看它的实现部分,发现返回的PaginatedList实际上是个接口,实现这个接口的是PaginatedDataList类的对象,查看PaginatedDataList类发现,每次翻页的时候最
- 精通Oracle10编程SQL(15)使用对象类型
bijian1013
oracle数据库plsql
/*
*使用对象类型
*/
--建立和使用简单对象类型
--对象类型包括对象类型规范和对象类型体两部分。
--建立和使用不包含任何方法的对象类型
CREATE OR REPLACE TYPE person_typ1 as OBJECT(
name varchar2(10),gender varchar2(4),birthdate date
);
drop type p
- 【Linux命令二】文本处理命令awk
bit1129
linux命令
awk是Linux用来进行文本处理的命令,在日常工作中,广泛应用于日志分析。awk是一门解释型编程语言,包含变量,数组,循环控制结构,条件控制结构等。它的语法采用类C语言的语法。
awk命令用来做什么?
1.awk适用于具有一定结构的文本行,对其中的列进行提取信息
2.awk可以把当前正在处理的文本行提交给Linux的其它命令处理,然后把直接结构返回给awk
3.awk实际工
- JAVA(ssh2框架)+Flex实现权限控制方案分析
白糖_
java
目前项目使用的是Struts2+Hibernate+Spring的架构模式,目前已经有一套针对SSH2的权限系统,运行良好。但是项目有了新需求:在目前系统的基础上使用Flex逐步取代JSP,在取代JSP过程中可能存在Flex与JSP并存的情况,所以权限系统需要进行修改。
【SSH2权限系统的实现机制】
权限控制分为页面和后台两块:不同类型用户的帐号分配的访问权限是不同的,用户使
- angular.forEach
boyitech
AngularJSAngularJS APIangular.forEach
angular.forEach 描述: 循环对obj对象的每个元素调用iterator, obj对象可以是一个Object或一个Array. Iterator函数调用方法: iterator(value, key, obj), 其中obj是被迭代对象,key是obj的property key或者是数组的index,value就是相应的值啦. (此函数不能够迭代继承的属性.)
- java-谷歌面试题-给定一个排序数组,如何构造一个二叉排序树
bylijinnan
二叉排序树
import java.util.LinkedList;
public class CreateBSTfromSortedArray {
/**
* 题目:给定一个排序数组,如何构造一个二叉排序树
* 递归
*/
public static void main(String[] args) {
int[] data = { 1, 2, 3, 4,
- action执行2次
Chen.H
JavaScriptjspXHTMLcssWebwork
xwork 写道 <action name="userTypeAction"
class="com.ekangcount.website.system.view.action.UserTypeAction">
<result name="ssss" type="dispatcher">
- [时空与能量]逆转时空需要消耗大量能源
comsci
能源
无论如何,人类始终都想摆脱时间和空间的限制....但是受到质量与能量关系的限制,我们人类在目前和今后很长一段时间内,都无法获得大量廉价的能源来进行时空跨越.....
在进行时空穿梭的实验中,消耗超大规模的能源是必然
- oracle的正则表达式(regular expression)详细介绍
daizj
oracle正则表达式
正则表达式是很多编程语言中都有的。可惜oracle8i、oracle9i中一直迟迟不肯加入,好在oracle10g中终于增加了期盼已久的正则表达式功能。你可以在oracle10g中使用正则表达式肆意地匹配你想匹配的任何字符串了。
正则表达式中常用到的元数据(metacharacter)如下:
^ 匹配字符串的开头位置。
$ 匹配支付传的结尾位置。
*
- 报表工具与报表性能的关系
datamachine
报表工具birt报表性能润乾报表
在选择报表工具时,性能一直是用户关心的指标,但是,报表工具的性能和整个报表系统的性能有多大关系呢?
要回答这个问题,首先要分析一下报表的处理过程包含哪些环节,哪些环节容易出现性能瓶颈,如何优化这些环节。
一、报表处理的一般过程分析
1、用户选择报表输入参数后,报表引擎会根据报表模板和输入参数来解析报表,并将数据计算和读取请求以SQL的方式发送给数据库。
2、
- 初一上学期难记忆单词背诵第一课
dcj3sjt126com
wordenglish
what 什么
your 你
name 名字
my 我的
am 是
one 一
two 二
three 三
four 四
five 五
class 班级,课
six 六
seven 七
eight 八
nince 九
ten 十
zero 零
how 怎样
old 老的
eleven 十一
twelve 十二
thirteen
- 我学过和准备学的各种技术
dcj3sjt126com
技术
语言VB https://msdn.microsoft.com/zh-cn/library/2x7h1hfk.aspxJava http://docs.oracle.com/javase/8/C# https://msdn.microsoft.com/library/vstudioPHP http://php.net/manual/en/Html
- struts2中token防止重复提交表单
蕃薯耀
重复提交表单struts2中token
struts2中token防止重复提交表单
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月12日 11:52:32 星期日
ht
- 线性查找二维数组
hao3100590
二维数组
1.算法描述
有序(行有序,列有序,且每行从左至右递增,列从上至下递增)二维数组查找,要求复杂度O(n)
2.使用到的相关知识:
结构体定义和使用,二维数组传递(http://blog.csdn.net/yzhhmhm/article/details/2045816)
3.使用数组名传递
这个的不便之处很明显,一旦确定就是不能设置列值
//使
- spring security 3中推荐使用BCrypt算法加密密码
jackyrong
Spring Security
spring security 3中推荐使用BCrypt算法加密密码了,以前使用的是md5,
Md5PasswordEncoder 和 ShaPasswordEncoder,现在不推荐了,推荐用bcrpt
Bcrpt中的salt可以是随机的,比如:
int i = 0;
while (i < 10) {
String password = "1234
- 学习编程并不难,做到以下几点即可!
lampcy
javahtml编程语言
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- 架构师之mysql----------------用group+inner join,left join ,right join 查重复数据(替代in)
nannan408
right join
1.前言。
如题。
2.代码
(1)单表查重复数据,根据a分组
SELECT m.a,m.b, INNER JOIN (select a,b,COUNT(*) AS rank FROM test.`A` A GROUP BY a HAVING rank>1 )k ON m.a=k.a
(2)多表查询 ,
使用改为le
- jQuery选择器小结 VS 节点查找(附css的一些东西)
Everyday都不同
jquerycssname选择器追加元素查找节点
最近做前端页面,频繁用到一些jQuery的选择器,所以特意来总结一下:
测试页面:
<html>
<head>
<script src="jquery-1.7.2.min.js"></script>
<script>
/*$(function() {
$(documen
- 关于EXT
tntxia
ext
ExtJS是一个很不错的Ajax框架,可以用来开发带有华丽外观的富客户端应用,使得我们的b/s应用更加具有活力及生命力。ExtJS是一个用 javascript编写,与后台技术无关的前端ajax框架。因此,可以把ExtJS用在.Net、Java、Php等各种开发语言开发的应用中。
ExtJs最开始基于YUI技术,由开发人员Jack
- 一个MIT计算机博士对数学的思考
xjnine
Math
在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进。为什么要深入数学的世界?作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅程。我的导师最初希望我去做的题目,是对appe