- Centos7 搭建 Jupyter + Nginx 服务
某龙兄
pythonnginxlinuxcentos
JupyterNotebook(此前被称为IPythonnotebook)是一个交互式笔记本,支持运行40多种编程语言。JupyterNotebook的本质是一个Web应用程序,便于创建和共享文学化程序文档,支持实时代码,数学方程,可视化和markdown。用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等。本文讲述如何搭建Jupyter+Nginx服务,仅供学习与交流,请勿用于商业用途一
- 再有人问你DDD,把这篇文章丢给他
聪明马的博客
Javajava开发语言
DDD(Domain-DrivenDesign,中文名领域模型设计)是一种软件开发方法论,它强调将业务领域中的知识融入到软件设计中。DDD强调将软件开发过程分为两个主要阶段:领域分析和领域建模。领域分析是指深入了解业务领域中的问题和需求,领域建模是将分析出的领域知识转化为软件模型。在本文中,我不再过多说明DDD的来龙去脉,我将用多个例子来详细说明使用DDD和不使用DDD的区别、优势和劣势。需求:假
- 知识图谱构建概念、工具、实例调研
熟悉的黑曼巴
知识图谱人工智能
一、知识图谱的概念知识图谱(Knowledgegraph)知识图谱是一种用图模型来描述知识和建模世界万物之间的关联关系的技术方法。知识图谱由节点和边组成。节点可以是实体,如一个人、一本书等,或是抽象的概念,如人工智能、知识图谱等。边可以是实体的属性,如姓名、书名或是实体之间的关系,如朋友、配偶。知识图谱的早期理念来自SemanticWeb(语义网络),其最初理想是把基于文本链接的万维网落转化为基于
- 全面解析 Enterprise Architect(EA)活动图的工具集:从元素到关系的详尽指南
泡沫o0
C/C++编程世界:探索C/C++的奥妙c++20开发语言c++嵌入式qtumlarm
目录标题第一章:引言——理解活动图的重要性1.1什么是活动图?1.1.1活动图的组成元素1.1.2活动图的应用场景1.2为什么选择EA作为建模工具?1.2.1EA的强大功能1.2.2EA与其他建模工具的对比第二章:活动图中的核心元素2.1活动类元素2.1.1Activity(活动)示例:2.1.2Action(动作)示例:2.1.3Partition(泳道)示例:2.1.4Send(发送)与Rec
- 灰色系统理论及其关联分析方法
青橘MATLAB学习
算法matlab数学建模
前言在现实世界中,许多系统的内部结构、参数及特征并未完全被人们认知。例如,粮食产量受肥料、气象、政策等多因素影响,但各因素与产量间的定量关系难以明确。这类部分信息已知、部分信息未知的系统被称为灰色系统。灰色系统理论从数据本征特性出发,通过有限信息挖掘系统规律,为信息匮乏或紊乱的问题提供建模与分析方法。本章将介绍灰色系统的基本概念及其核心方法——关联分析,揭示如何通过动态态势量化解决实际问题。§1灰
- 使用Python获取在线股票交易网站的实时交易数据
嵌入式开发项目
2025年爬虫精通专栏python开发语言爬虫
目录步骤1:选择股票交易网站步骤2:使用requests库发送HTTP请求步骤3:解析HTML内容步骤4:提取实时交易数据步骤5:存储和使用数据在金融市场中,实时交易数据对于投资者来说具有重要的价值。实时的股票价格、交易量和其他市场指标可以帮助投资者做出更准确的决策,同时也是进行金融分析和建模的重要数据源。在本篇博客中,我们将学习如何使用Python获取在线股票交易网站的实时交易数据。在开始之前,
- 第2章:单例孤舟:封装初战
PM简读馆
Java之黄金罗盘java开发语言
数据风暴中的追猎海面突然凝结成镜面般的代码层,我们乘坐的单例孤舟在static修饰的静止海域艰难穿行。老者机械臂上的示波器突然发出刺耳警报:"警告!黑帆集团正在调用getDeclaredFields()!"十二道扫描光束从天而降,在船体表面投射出猩红的字段标记:publicclass单例孤舟{publicint弹药量=100;//[!]危险暴露publicString引擎密钥="0xCAFEBAB
- SWAT-MODFLOW地表水-地下水耦合建模
岁月如歌,青春不败
水文水资源SWAT模型MODFLOW模型水文模型水文水资源土地利用cmip6气候变化
一:耦合模型原理与层次结构1.1流域水循环与SWAT模型1.2地下水模拟与MODFLOW模型1.3SWAT-MODFLOW地表-地下耦合模型1.4QSWATMOD插件与功能1.5模型实现所需软件平台二:QGIS软件2.1QGIS平台2.2QGIS安装2.3QGIS界面认识2.4QGIS常见数据格式2.5QGIS建立工程三:基于QSWATMOD的SWAT-MODFLOW模拟3.1QSWATMOD下载
- 【第11章:生成式AI与创意应用—11.2 音频与音乐生成的探索与实践】
再见孙悟空_
#【深度学习・探索智能核心奥秘】人工智能音视频自然语言处理NLP深度学习生成式AIDeepSeek
凌晨三点的录音棚里,制作人小林对着空荡荡的混音台抓狂——广告方临时要求将电子舞曲改编成巴洛克风格,还要保留"赛博朋克"元素。当他在AI音乐平台输入"维瓦尔弟遇见霓虹灯"的瞬间,一段融合羽管键琴与合成器的奇妙旋律喷涌而出,这场人与机器的音乐狂想曲正式拉开帷幕。一、声波炼金术:从物理建模到神经作曲1.1传统音频生成的三大门派在AI登场之前,音乐科技已经历三次革命:物理建模派(1980s):用微分方程模
- 基于GPT一键完成数据分析全流程的AI Agent: Streamline Analyst
Wilson_ZheLIN
gpt4aiagentllms数据分析
大型语言模型(LLM)的兴起不仅为获取知识和解决问题开辟了新的可能性,而且催生了一些新型智能系统,例如旨在辅助用户完成特定任务的AICopilot以及旨在自动化和自主执行复杂任务的AIAgent,使得编程、创作等任务变得高效而条理。在数据科学和可视化方面,非常多家AICopilot通过提供智能提示、建议或辅助决策等手段有效减小了用户的工作量。但是很少有app针对不同种类数据的预处理、建模、可视化等
- 基于 Spring Cloud + Sentinel 的全面流量治理方案
power-辰南
java技术架构师成长专栏springcloudsentinelspring流量治理
一、精准评估系统最大负载1.流量建模历史日志分析流量特征提取业务场景拆解流量模型构建容量预测模型实施方法:使用ELK分析6个月Nginx日志,提取分时/分业务QPS曲线构建典型场景模型:日常流量(正态分布)、促销流量(脉冲模型)、恶意攻击(毛刺识别)容量公式:单实例容量=(CPU核心数*1000ms)/平均RT(ms)2.数据模拟与环境搭建#使用tcpcopy复制生产流量./tcpcopy-x80
- Spring Cloud微服务生产级容量评估实战
power-辰南
java专栏springcloud微服务spring容量评估
一、容量评估体系架构业务需求分析流量建模环境仿真分级压测瓶颈分析容量计算配置推荐验证优化二、流量建模与数据模拟2.1流量建模四步法步骤1:生产流量分析#分析Nginx日志获取真实流量特征awk'{print$4,$7,$9}'access.log|awk-F'[:]''{print$1,$5,$7}'|sort|uniq-c|sort-nr>api_distribution.txt#输出示例:14
- 机器学些|实战?
dami_king
随笔机器学习
机器学习实战:从零到%1…今天聊聊机器学习(MachineLearning,ML),这个听起来高大上的技术其实并没有那么神秘。跟着我的节奏,咱们一起来探索一下如何从零开始!准备工作:安装和导入必要的库在开始我们的房价预测项目之前,我们需要准备好开发环境并导入所有必要的库。这些库将帮助我们处理数据、构建模型、评估性能以及可视化结果。安装Python和JupyterNotebook首先,确保你已经安装
- 数据仓库、数据湖和数据湖仓
阿湯哥
数据仓库spark大数据
数据仓库、数据湖和数据湖仓是三种常见的数据存储和管理技术,各自有不同的特点和适用场景。以下是它们的详细比较:1.数据仓库(DataWarehouse)定义:用于存储结构化数据,经过清洗、转换和建模,支持复杂的查询和分析。特点:结构化数据:主要处理关系型数据。预定义模式:数据在加载前需要定义模式(Schema-on-Write)。高性能查询:优化用于复杂查询和报表生成。数据治理:提供强大的数据治理和
- 数学建模基础训练-1:概念解析
MPCTHU
数学建模数学建模
文章目录数学建模基础训练-1:概念解析问题一:如何找到“概念”?问题二:如何全面理解概念的基础含义?问题三:如何深刻理解概念并作出创新点发掘?实际举例问题一:研究并给出寒假开学某大学返校交通问题的合理解决方案首先,找到“概念”:其次,认识基础概念:第三,对概念的二次挖掘学生到校与离校的交通流量模型交通拥堵对学校教学与运营的影响模型交通安全事故风险评估模型学校交通设施规划与优化模型问题二:研究并给出
- 什么是3D视觉无序抓取?
视觉人机器视觉
机器视觉3D3d人工智能视觉检测计算机视觉c#
3D视觉无序抓取是一种结合三维视觉技术、机器人控制与智能算法的工业自动化解决方案,旨在实现机器人对散乱、无序堆放的物体进行自主识别、定位和抓取的操作。其核心是通过3D视觉系统获取物体的三维空间信息,结合路径规划与避障算法,引导机械臂完成高精度抓取任务,无需依赖预先设定的固定程序或工装夹具。以下是其关键要点:核心组成与技术原理三维视觉感知:采用3D相机(如结构光、双目视觉、ToF技术)扫描物体表面,
- Matlab 机器人 雅可比矩阵
CodingAlgo
算法
===工业机器人运动学与Matlab正逆解算法学习笔记(用心总结一文全会)(四)——雅可比矩阵_staubli机器人正逆向运动学实例验证matlab-CSDN博客===matlab求雅可比矩阵_六轴机械臂矢量积法求解雅可比矩阵-CSDN博客===(63封私信/80条消息)MATLAB机器人工具箱中机器人逆解是如何求出来的?-知乎===https://zhuanlan.zhihu.com/p/638
- 利用模型输出,解决Yalmip建模+Cplex求解的约束出错问题
eeeecj_23
优化求解matlabmatlab
在进行优化求解过程中,难免会遇到这种情况:Row‘c373’infeasible,allentriesatimpliedbounds.那么应该怎么办呢?当用Yalmip建模+Cplex求解过程中,由于Yalmip的建模方式与Cplex有一定的不同,如图:saveampl(constraint,object,'mymodel');得到结果为:从图中可知,由于没有准确的行编号,利用其对Cplex求解过
- 架构设计之软件建模与软件设计文档
夜夜流光相皎洁_小宁
架构设计#架构案例分析架构设计软件建模UML建模需求分析概要设计软件建模流程建模的定义与建模解决的问题软件设计文档
目录一、概述二、软件建模2.1软件建模的定义2.2软件建模的作用2.3软件建模解决的问题2.3.1明确要解决的领域问题2.3.2最终开发出来的系统包含什么2.3.3软件模型设计流程三、软件设计方法3.1概述3.2类图3.3时序图3.4组件图3.5部署图3.6用例图3.7状态图3.8活动图四、软件设计文档4.1概述4.2需求分析4.3概要设计4.4详细设计4.5总结五、总结一、概述架构师的一系列软件
- Audio-Visual Speech Enhancement(视听语音增强)领域近三年研究进展与国内团队及手机厂商动态分析
AndrewHZ
深度学习新浪潮智能手机算法计算机视觉硬件架构硬件工程智能硬件
一、视听语音增强领域近三年研究进展多模态融合与模型轻量化多模态特征融合:中国科学技术大学团队提出通过引入超声舌头图像和唇部视频的联合建模,结合知识蒸馏技术,在训练阶段利用教师模型传递舌部运动知识,从而在推断时仅依赖唇部视频即可提升语音增强效果。此外,中科院声学所提出基于泰勒展开的模型架构,将幅度-相位解耦与空间-谱域解耦重新建模,提升算法可解释性并优化性能。轻量化模型设计:中国科大与腾讯天籁实验室
- 递归消除特征法RFE筛选特征-包装法-特征选择-特征降维
糯米君_
预处理机器学习python人工智能
RFE(Recursivefeatureelimination):递归消除特征法使用一个基模型(这里使用逻辑回归)来进行多轮训练,每轮训练后,消除若干权值系数的特征,再基于新的特征集进行下一轮训练。RFE的具体步骤如下:1、初始的特征集为所有可用的特征。2、使用当前特征集进行建模,然后计算每个特征的重要性。3、删除最不重要的一个(或多个)特征,更新特征集。4、跳转到步骤2,直到完成所有特征的重要性
- ARIMA差分自回归移动平均模型--时间序列预测
别团等shy哥发育
数据挖掘与机器学习回归python数据挖掘时间序列分析机器学习
ARIMA差分自回归移动平均模型1、ARIMA模型理论基础2、ARIMA建模步骤3、ARIMA建模实战3.1导入模块3.2加载数据3.3平稳性检验3.4单位根检验3.4白噪声检验3.5模型定阶3.6参数估计3.7模型的显著性检验3.8模型预测3.8模型拟合效果展示参考文献论文:文章:1、ARIMA模型理论基础 ARIMA是差分自回归移动平均模型的引文缩写,其中AR表示的是自回归模型,MA表示的是
- 【论文精读】MotionLM
EEPI
自动驾驶深度学习论文阅读
【论文精读】MotionLM1背景2存在的问题3具体方案轨迹转运动序列模型轨迹去重和聚类loss1背景团队:Waymo时间:2023.9代码:简介:采用自回归的方式做轨迹生成,能够更好地建模交互,且避免模态坍缩,在数据集达到了SOTA。2存在的问题轨迹回归方面:原本xy预测认为空间过大,有的xy很大(t大速度快的时候),有的xy很小(t小速度慢的时候)。3具体方案Encoder采用了之前的论文Wa
- OpenCV:人脸检测与Haar级联分类器(十三)
WHCIS
opencvopencv数学建模人工智能计算机视觉音视频算法
一、Haar级联检测深度解析1.1Haar特征数学建模Haar特征的本质是通过矩形区域对比捕捉局部特征,其数学形式可扩展为四元组表示:特征定义:Haar(f)=(t,x,y,w,h)×s\text{Haar}(f)=(t,x,y,w,h)\timessHaar(f)=(t,x,y,w,h)×s其中:ttt表示特征类型(共14种基础变体)(x,y)(x,y)(x,y)为特征锚点坐标(w,h)(w,h
- Flink SQL 优化实战 - 维表 JOIN 优化
腾讯云大数据
大数据数据库flinksql
作者:龙逸尘,腾讯CSIG高级工程师背景介绍维表(DimensionTable)是来自数仓建模的概念。在数仓模型中,事实表(FactTable)是指存储有事实记录的表,如系统日志、销售记录等,而维表是与事实表相对应的一种表,它保存了事实表中指定属性的相关详细信息,可以跟事实表做关联;相当于将事实表上经常重复出现的属性抽取、规范出来用一张表进行管理。在实际生产中,我们经常会有这样的需求,以原始数据流
- SpringCloud之网关Gateway
2401_85358655
springcloudgatewayspring
3、过滤器(Filter):一个标准的SpringWebFilter,SpringCloudGateway中的Filter分为两种类型:GatewayFilter和GlobalFilter。过滤器Filter可以对请求和响应进行处理2、基本搭建①、新建模块②、导入依赖4.0.0com.gatewaycode0.0.1-SNAPSHOTgatewayDemoprojectforSpringBoot8
- 06 Django-orm-多表操作
lzplum619
DjangoLinux相关djangopython
一创建模型实例:我们来假定下面这些概念,字段和关系作者模型:一个作者有姓名和年龄。作者详细模型:把作者的详情放到详情表,包含生日,手机号,家庭住址等信息。作者详情模型和作者模型之间是一对一的关系(one-to-one)出版商模型:出版商有名称,所在城市以及email。书籍模型:书籍有书名和出版日期,一本书可能会有多个作者,一个作者也可以写多本书,所以作者和书籍的关系就是多对多的关联关系(many-
- 「前端+鸿蒙」鸿蒙应用开发-TS-模块化
吴维炜
大前端开发前端鸿蒙harmonyos华为typescript
在TypeScript中,模块化是一种将代码分割成独立单元的方式,每个单元可以封装特定的功能或数据。模块化有助于保持代码的组织性、可维护性和可重用性。TypeScript支持ES6模块标准,这意味着你可以使用import和export语句来创建模块。TS快速入门-模块化导出模块成员使用export关键字可以将类、接口、类型、函数或变量导出,以便它们可以在其他文件中被导入。//myModule.ts
- 理解设计模式与 UML 类图:构建稳健软件架构的基石
A_cot
设计模式umlmicrosoft简单工厂模式工厂方法模式
在软件开发的广阔天地里,设计模式与UML(统一建模语言)类图犹如两座灯塔,为开发者照亮前行的道路,指引着我们构建出高质量、可维护且易于扩展的软件系统。今天,就让我们一同深入探索单一职责、开闭原则、简单工厂模式以及UML类图中的关键概念,包括关联、依赖、泛化、实现,还有关联关系中的特殊形式——组合与聚合。一、设计模式的基石:单一职责与开闭原则(一)单一职责原则单一职责原则如同软件世界中的“专注大师”
- [C51]sg90舵机控制
颜笑晏晏
C51单片机
1.什么是舵机如下图所示,最便宜的舵机sg90,常用三根或者四根接线,黄色为PWM信号控制用处:垃圾桶项目开盖用、智能小车的全比例转向、摄像头云台、机械臂等常见的有0-90°、0-180°、0-360°2.怎么控制舵机向黄色信号线“灌入”PWM信号。PWM波的频率不能太高,大约50HZ,即周期=1/频率=1/50=0.02s,20ms左右数据:0.5ms-------------0度;2.5%对应
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo