- [水]与grok聊Java
啾啾大学习
水java开发语言
摘要:AI时代,二本毕业一般工资一般履历的java程序员要怎么做才能不被淘汰呢?3步之内必有解药?AI带来的问题让AI解决?转行么?先水一篇吧(我知道可能不如去学习,但是我要是学习好我会这个样子,可恶,加油)目录1、AI带来的问题职业危机2、AI带来的机遇2.1、职业发展的帮助职业发展预测可能的职业1.AI工程师(AIEngineer)2.机器学习工程师(MachineLearningEngine
- Deepseek 使用指南与提问优化策略
西瓜拍两瓣
ai语言模型pythongpt
序言随着人工智能技术的迅猛发展,语义搜索已成为提升信息检索效率和用户体验的核心工具。DeepSeek作为一款先进的语义搜索引擎,通过自然语言处理(NLP)和机器学习技术,能够深入理解用户查询的语义意图,提供高度精准的搜索结果。本文将详细介绍DeepSeek的核心功能、集成方法,并深入探讨如何通过优化提问策略,最大化利用DeepSeek的语义搜索能力,从而提升信息检索的效率和准确性。访问DeepSe
- 【Python】OpenCV算法使用案例全解
岱宗夫up
教学opencv计算机视觉人工智能算法
OpenCV算法使用案例全解前言OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉和机器学习软件库,它提供了大量的图像和视频处理功能。从简单的图像滤波到复杂的三维重建,OpenCV涵盖了计算机视觉领域的众多算法。本文将详细介绍OpenCV中常见算法的使用案例,帮助读者更好地理解和应用这些强大的工具。一、图像处理基础(一)滤波操作滤波是图像处理中最基
- 程序员未来黄金赛道:AI与大模型引领职业新机遇
AI学习不迷路
人工智能大模型自然语言处理LLM程序员AI大模型转行
2025年,人工智能(AI)与大型机器学习模型(LLM)的爆发式发展正重塑技术行业格局。面对AI编程工具日益强大的代码生成能力,程序员的职业角色面临深刻转型。如何在这场变革中抢占先机?本文结合行业趋势与专家洞察,解析程序员未来的核心出路。一、拥抱AI与新兴技术:从“编码者”到“解决方案架构师”AI大模型工程师:随着GPT、通义灵码等代码生成工具普及,程序员的角色正从基础编码转向模型调优与场景化应用
- 【Address Overfitting】解决过拟合的三种方法
HP-Succinum
机器学习机器学习数据分析
目录1.收集更多数据实践方法:适用场景:优缺点:2.特征选择方法介绍:实践示例:适用场景:优缺点:3.正则化(Regularization)正则化类型:实践示例:适用场景:优缺点:总结与对比总结在机器学习中,过拟合(Overfitting)是模型训练过程中常见的问题。它指的是模型在训练集上表现优秀,但在测试集或新数据上表现较差,无法很好地泛化。过拟合通常源于模型过于复杂或数据不足。本文将详细介绍解
- ES: 机器学习、专家系统、控制系统的数学映射
wishchin
AI/ES
一、基本定义1.机器学习维基定义:机器学习有下面几种定义:“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”。“机器学习是对能通过经验自动改进的计算机算法的研究”。“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。”一种经常引用的英文定义是:AcomputerprogramissaidtolearnfromexperienceEw
- 数据挖掘与数据分析
dundunmm
数据挖掘数据挖掘数据分析人工智能
数据挖掘和数据分析是两个密切相关但有所区别的领域,它们都涉及从数据中提取有价值的信息,但在目标、方法和技术上有所不同。数据挖掘vs.数据分析特征数据挖掘数据分析目标从大数据中自动发现知识和模式通过系统分析数据,得出有意义的结论重点数据模式的自动发现、预测模型的构建数据理解、数据清洗、数据总结、假设验证方法机器学习、聚类、回归、关联规则、深度学习等统计学方法、数据可视化、数据清理、假设检验等应用实时
- An Introduction to Statistical Learning with Applicatio
AI天才研究院
Python实战DeepSeekR1&大数据AI人工智能大模型大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.简介1.1定义统计学习(statisticallearning)是一门研究如何从数据中提取知识并应用于预测、决策或其他目的的一门学科。它是机器学习、数据挖掘、计算机视觉等领域的一个分支,是当前热门的AI方向。1.2特点数据驱动:统计学习倾向于采用结构化的数据——如表格或矩阵形式——作为输入;假设空间少:统计学习通常只考虑一种假设空间,即概率模型或概率分布;模型复杂性
- DiNN学习笔记1-理论部分
瓜皮37
同态加密密码学信息安全神经网络
DiNN学习笔记1-理论部分背景知识机器学习即服务MLaaS中的全同态加密神经网络Fhe-DiNN中的默认设定Fhe-DiNN方案神经元中的计算离散神经网络DiNN评估步骤自举的引入激活函数的同态评估对TFHE的改进明文的打包密钥转换的前置动态变化的消息空间优化盲旋步骤DiNN方案的整体流程参考资料背景知识机器学习即服务机器学习即服务(MachineLearningasaService,MLaaS
- 大模型算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
介绍:大模型算法工程师是指在开发和部署复杂的机器学习模型、深度学习模型或其他大规模模型的专业人员。他们的主要职责和技能要求包括:职责:设计、开发和优化大规模机器学习或深度学习模型,解决复杂的业务问题。负责整个模型开发生命周期,包括数据清洗、特征工程、模型选择、训练和部署。与数据科学家、工程团队和产品团队合作,理解业务需求并将算法转化为实际产品。对模型性能进行评估和优化,确保模型的准确性、效率和可扩
- 机器学习——KNN算法实战—手写数字识别
巷955
机器学习算法人工智能
原理简述:KNN算法是机器学习中的一种基础的分类回归算法,选择距离自己最近的几条数据,依据最邻近的数据性质来估测自身的性质。下面我们开始实战,制作手写数字识别模型:一、cv2创建模型1、导入相关的库,这里我们用numpy和cv2两个库importnumpyasnpimportcv22、导入数据,并转化灰度图像img=cv2.imread('digits.png')gray=cv2.cvtColor
- 数据清洗与统计分析原理与代码实战案例讲解
AI天才研究院
ChatGPTAI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
《数据清洗与统计分析原理与代码实战案例讲解》关键词:数据清洗、统计分析、Python、R语言、数据预处理、数据分析、机器学习、大数据摘要:本文将深入探讨数据清洗与统计分析的原理,并通过丰富的实战案例展示如何在实际项目中应用这些技术。我们将详细讲解数据清洗的基本概念、流程和方法,以及统计分析的各种技术和应用。通过本文的学习,您将掌握数据清洗与统计分析的核心技能,提升数据处理和分析的能力,为后续的数据
- 机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例
Mostcow
数据分析Python机器学习随机森林回归大数据
机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例随机森林回归(RandomForestRegression):任务类型:随机森林回归主要用于回归任务。在回归任务中,算法试图预测一个连续的数值输出,而不是一个离散的类别。输出:随机森林回归的输出是一个连续的数值,表示输入数据的预测结果。算法原理:随机森林回归同样基于决策树,但在回归任务中,每个决策树的
- 机器学习_Scikit-Learn随机森林回归(RandomForestRegressor)实例
Mostcow
Python数据分析机器学习scikit-learn随机森林回归算法
机器学习_Scikit-Learn随机森林回归(RandomForestRegressor)实例随机森林回归(RandomForestRegression):随机森林是一种集成学习方法,它通过构建多个决策树来进行预测。它对于处理大量特征、非线性关系和避免过拟合都有一定的优势。在Python中,你可以使用Scikit-learn库中的RandomForestRegressor来实现。随机森林回归作为
- 矩阵理论与应用:矩阵范数
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
矩阵理论与应用:矩阵范数1.背景介绍1.1问题的由来矩阵范数在数学、工程、物理以及计算机科学等多个领域都有着广泛的应用。它提供了一种衡量矩阵大小或者矩阵变换的影响程度的方法。矩阵范数的概念对于理解矩阵的性质、数值稳定性、以及在机器学习和信号处理中的矩阵操作至关重要。例如,在数值线性代数中,矩阵范数用于评估算法的收敛性、误差估计和稳定性。在信号处理中,它可以用来评估信号的失真程度或者噪声的影响。1.
- 聚类分析tensorflow实例_新手必看的机器学习算法集锦(聚类篇)
道酝欣赏
继上一篇《机器学习算法之分类》中大致梳理了一遍在机器学习中常用的分类算法,类似的,这一姊妹篇中将会梳理一遍机器学习中的聚类算法,最后也会拓展一些其他无监督学习的方法供了解学习。1.机器学习机器学习是近20多年兴起的一门多领域交叉学科,它涉及到概率论、统计学、计算机科学以及软件工程等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类能从数据中自动分析获得规律
- 2024 最新计算机视觉学习路线(入门篇)_计算机视觉课程主线
m0_60721823
计算机视觉学习人工智能
Python是机器学习项目中最流行的编程语言之一,因为与Java和C++等其他编程语言相比,它简单易读。Python附带了许多可以加快开发速度的库,其中一些重要的库是OpenCV、TensorFlow、PyTorch等,它们专门用于图像处理相关任务。本文旨在向初学者介绍这一领域,为他们提供有关涉及图像的机器学习应用程序背后概念的基本知识,并从高层次的角度深入了解这些库如何在底层协同工作,以便他们在
- 【数学建模】基于matlab模拟无人车泊车问题仿真
matlab科研助手
数学建模matlab开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍无人驾驶汽车技术近年来取得了飞速发展,其中自动泊车功能是关键技术之一。本文将重点讨论无
- 将excel文件各列保存为txt的实战代码
爱编程的喵喵
Python基础课程pythonexceltxt实战代码
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了将excel文件各列保存为txt的实
- 神经进化算法(Neuroevolution) 原理与代码实例讲解
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
神经进化算法,Neuroevolution,进化算法,深度学习,机器学习,遗传算法,神经网络,代码实例1.背景介绍在机器学习领域,神经网络凭借其强大的学习能力和泛化能力,在图像识别、自然语言处理、语音识别等领域取得了显著的成就。然而,传统的神经网络训练方法通常依赖于人工设计的网络结构和参数初始化,这往往需要大量的经验和试错,并且难以找到最优的网络结构和参数。神经进化算法(Neuroevolutio
- 强者联盟——Python语言结合Spark框架
博文视点
全栈工程师全栈全栈数据SparkPythonPySpark
引言:Spark由AMPLab实验室开发,其本质是基于内存的快速迭代框架,“迭代”是机器学习最大的特点,因此非常适合做机器学习。得益于在数据科学中强大的表现,Python语言的粉丝遍布天下,如今又遇上强大的分布式内存计算框架Spark,两个领域的强者走到一起,自然能碰出更加强大的火花(Spark可以翻译为火花),因此本文主要讲述了PySpark。本文选自《全栈数据之门》。全栈框架Spark由AMP
- 基础篇(二)从监督学习到强化学习:机器学习的不同范式
带上一无所知的我
智能体的自我修炼:强化学习指南机器学习人工智能基础篇
从监督学习到强化学习:机器学习的不同范式在机器学习的广阔领域中,监督学习和强化学习是两种最重要的范式。它们各自有其独特的特点和应用场景,但也存在紧密的联系。本文将从监督学习出发,逐步延伸到强化学习,帮助你理解这两种范式的区别与联系,以及它们在实际中的应用。1.监督学习:从标注数据中学习1.1什么是监督学习?监督学习是机器学习中最常见的范式之一。它通过从标注数据中学习,建立输入(特征)与输出(标签)
- Lucene硬核解析专题系列(三):查询解析与执行
yinlongfei_love
lucenemybatis全文检索
Lucene的索引构建为高效搜索奠定了基础,而查询解析与执行则是将用户意图转化为实际结果的关键环节。本篇将从查询的解析开始,逐步深入到查询类型、评分模型和执行流程,揭示Lucene搜索能力的底层原理。一、查询语法与QueryParser的工作原理Lucene的查询过程始于用户输入的搜索字符串,例如“人工智能AND机器学习”。这一字符串需要被解析为Lucene能够理解的结构化对象。QueryPars
- 深入解析Python机器学习库Scikit-Learn的应用实例
caihuayuan5
面试题汇总与解析springbootjava后端大数据课程设计
深入解析Python机器学习库Scikit-Learn的应用实例随着人工智能和数据科学领域的迅速发展,机器学习成为了当下最炙手可热的技术之一。而在机器学习领域,Python作为一种功能强大且易于上手的编程语言,拥有庞大的生态系统和丰富的机器学习库。其中,Scikit-Learn作为Python中一个重要的机器学习库,包含了许多常用的机器学习算法和工具,可用于数据挖掘、数据分析和预测建模等应用场景。
- LLaMA Factory添加新模型template的实战解析
herosunly
大模型llamafactory新模型template实战解析
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- 机器学习之经典算法(十六) Birch算法
AI专家
机器之心修炼之路
(一)Birch算法简介:BIRCH(BalancedIterativeReducingandClusteringUsingHierarchies)全称是:利用层次方法的平衡迭代规约和聚类。BIRCH算法是1996年由TianZhang提出来的。Birch算法就是通过聚类特征(CF)形成一个聚类特征树,root层的CF个数就是聚类个数。整个算法实现共分为4个阶段:1.扫描所有数据,建立初始化的CF
- 因果推断在智能广告中的实践
AI天才研究院
计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
非常感谢您提出这个有趣的话题。让我们一步步设计一个关于"因果推断在智能广告中的实践"的系统架构。这个项目将涉及复杂的数据分析、机器学习和广告投放系统,我们需要仔细考虑各个方面以确保系统的有效性和可扩展性。文章目录因果推断在智能广告中的实践-系统架构设计1.需求分析1.1功能需求1.2非功能性需求2.系统概述2.1高层次系统描述2.2主要组件及关系2.3系统核心流程3.详细架构设计3.1数据收集模块
- 周志华机器学习西瓜书 第五章 神经网络-学习笔记(超详细)
Sodas(填坑中....)
周志华西瓜书——详细笔记附例题图解机器学习神经网络学习人工智能数据挖掘算法
在机器学习中,神经网络一般指的是"神经网络学习",是机器学习与神经网络两个学科的交叉部分。所谓神经网络,目前用的最广泛的一个定义是"神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体做出交互反应"。神经网络是一门重要的机器学习技术。它是目前最为火热的研究方向--深度学习的基础。学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助
- 编程小白冲Kaggle每日打卡(17)--kaggle学堂:<机器学习简介>随机森林
AZmax01
编程小白冲Kaggle每日打卡机器学习随机森林人工智能
Kaggle官方课程链接:RandomForests本专栏旨在Kaggle官方课程的汉化,让大家更方便地看懂。RandomForests使用更复杂的机器学习算法。介绍决策树给你留下了一个艰难的决定。一棵有很多叶子的深树会被过度拟合,因为每一个预测都来自它叶子上少数房子的历史数据。但是,叶子很少的浅树表现不佳,因为它无法在原始数据中捕捉到尽可能多的区别。即使是当今最复杂的建模技术也面临着欠拟合和过拟
- Matlab 大量接单
matlabgoodboy
matlab开发语言
分享一个matlab接私活、兼职的平台1、技术方向满足任一即可2、技术要求3、最后技术方向满足即可MATLAB:熟练掌握MATLAB编程语言,能够使用MATLAB进行数据处理、机器学习和深度学习等相关工作。机器学习、深度学习、强化学习、仿真、复现、算法、神经网络、建模、图像识别、数据挖掘、数据获取、爬虫、数据分析、目标检测、算法创新、因子分析、相关分析、方差分析、判别分析、方程分析、线性回归、中介
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数