f ( a , b , c , n ) = ∑ i = 0 n a i + b c f(a,b,c,n)=\sum_{i=0}^n\frac{ai+b}{c} f(a,b,c,n)=i=0∑ncai+b
情况一: a ≥ c o r b ≥ c a\ge c~or~b \ge c a≥c or b≥c
f ( a , b , c , n ) = f ( a % c , b % c , c , n ) + n ( n + 1 ) 2 ⋅ a c + b c ⋅ ( n + 1 ) f(a,b,c,n)=f(a\%c,b\%c,c,n)+\frac{n(n+1)}{2}\cdot\frac{a}{c}+\frac{b}{c}\cdot(n+1) f(a,b,c,n)=f(a%c,b%c,c,n)+2n(n+1)⋅ca+cb⋅(n+1)
情况二: a < b a n d a < c a<b~and~a<c a<b and a<c
f ( a , b , c , n ) = ∑ i = 0 n ∑ j = 1 m [ a i + b ≥ c j ] = ( n + 1 ) m − ∑ j = 0 m − 1 c j + ( c − b + a − 1 ) a = ( n + 1 ) m − f ( c , c − b + a − 1 , a , m − 1 ) f(a,b,c,n)=\sum_{i=0}^n\sum_{j=1}^m[ai+b\ge cj]=(n+1)m-\sum_{j=0}^{m-1}\frac{cj+(c-b+a-1)}{a}=(n+1)m-f(c,c-b+a-1,a,m-1) f(a,b,c,n)=i=0∑nj=1∑m[ai+b≥cj]=(n+1)m−j=0∑m−1acj+(c−b+a−1)=(n+1)m−f(c,c−b+a−1,a,m−1)
g ( a , b , c , n ) = ∑ i = 0 n i a i + b c g(a,b,c,n)=\sum_{i=0}^ni\frac{ai+b}{c} g(a,b,c,n)=i=0∑nicai+b
情况一: a ≥ c o r b ≥ c a\ge c~or~b \ge c a≥c or b≥c
g ( a , b , c , n ) = g ( a % c , b % c , c , n ) + n ( n + 1 ) ( 2 n + 1 ) 6 ⋅ a c + n ( n + 1 ) 2 ⋅ b c g(a,b,c,n)=g(a\%c,b\%c,c,n)+\frac{n(n+1)(2n+1)}{6}\cdot\frac{a}{c}+\frac{n(n+1)}{2}\cdot\frac{b}{c} g(a,b,c,n)=g(a%c,b%c,c,n)+6n(n+1)(2n+1)⋅ca+2n(n+1)⋅cb
情况二: a < b a n d a < c a<b~and~a<c a<b and a<c
g ( a , b , c , n ) = ∑ i = 0 n i ∑ j = 1 m [ a i + b ≥ c j ] = g(a,b,c,n)=\sum_{i=0}^ni\sum_{j=1}^m[ai+b\ge cj]= g(a,b,c,n)=i=0∑nij=1∑m[ai+b≥cj]=
1 2 ( m n ( n + 1 ) − ∑ j = 0 m − 1 ( c j + ( c − b + a − 1 ) a ) 2 + ∑ j = 0 m − 1 c j + ( c − b + a − 1 ) a ) = \frac{1}{2}\left(mn(n+1)-\sum_{j=0}^{m-1}\left(\frac{cj+(c-b+a-1)}{a}\right)^2+\sum_{j=0}^{m-1}\frac{cj+(c-b+a-1)}{a}\right)= 21(mn(n+1)−j=0∑m−1(acj+(c−b+a−1))2+j=0∑m−1acj+(c−b+a−1))=
1 2 ( m n ( n + 1 ) − h ( c , c − b + a − 1 , a , m − 1 ) + f ( c , c − b + a − 1 , a , m − 1 ) ) \frac{1}{2}(mn(n+1)-h(c,c-b+a-1,a,m-1)+f(c,c-b+a-1,a,m-1)) 21(mn(n+1)−h(c,c−b+a−1,a,m−1)+f(c,c−b+a−1,a,m−1))
h ( a , b , c , n ) = ∑ i = 0 n ( a i + b c ) 2 h(a,b,c,n)=\sum_{i=0}^n\left(\frac{ai+b}{c}\right)^2 h(a,b,c,n)=i=0∑n(cai+b)2
情况一: a ≥ c o r b ≥ c a\ge c~or~b \ge c a≥c or b≥c
h ( a , b , c , n ) = n ( n + 1 ) ( 2 n + 1 ) 6 ⋅ ( a c ) 2 + ( b c ) 2 ⋅ ( n + 1 ) + a c ⋅ b c n ( n + 1 ) + h(a,b,c,n)=\frac{n(n+1)(2n+1)}{6}\cdot\left(\frac{a}{c}\right)^2+\left(\frac{b}{c}\right)^2\cdot(n+1)+\frac{a}{c}\cdot\frac{b}{c}n(n+1)+ h(a,b,c,n)=6n(n+1)(2n+1)⋅(ca)2+(cb)2⋅(n+1)+ca⋅cbn(n+1)+
2 a c g ( a % c , b % c , c , n ) + 2 b c f ( a % c , b % c , c , n ) + h ( a % c , b % c , c , n ) 2\frac{a}{c}g(a\%c,b\%c,c,n)+2\frac{b}{c}f(a\%c,b\%c,c,n)+h(a\%c,b\%c,c,n) 2cag(a%c,b%c,c,n)+2cbf(a%c,b%c,c,n)+h(a%c,b%c,c,n)
情况二: a < b a n d a < c a<b~and~a<c a<b and a<c
h ( a , b , c , n ) = ∑ i = 0 n ∑ j = 1 m [ a i + b ≥ c j ] ( 2 j − 1 ) = ∑ j = 0 m − 1 ( 2 j + 1 ) ( n + 1 − c j + ( c − b + a − 1 ) a ) = h(a,b,c,n)=\sum_{i=0}^n\sum_{j=1}^m[ai+b\ge cj](2j-1)=\sum_{j=0}^{m-1}(2j+1)\left(n+1-\frac{cj+(c-b+a-1)}{a}\right)= h(a,b,c,n)=i=0∑nj=1∑m[ai+b≥cj](2j−1)=j=0∑m−1(2j+1)(n+1−acj+(c−b+a−1))=
m 2 ( n + 1 ) − 2 g ( c , c − b + a − 1 , a , m − 1 ) − f ( c , c − b + a − 1 , a , m − 1 ) m^2(n+1)-2g(c,c-b+a-1,a,m-1)-f(c,c-b+a-1,a,m-1) m2(n+1)−2g(c,c−b+a−1,a,m−1)−f(c,c−b+a−1,a,m−1)
洛谷P5170
#include
using namespace std;
typedef long long ll;
ll modpow(ll a, int b);
const int mod = 998244353, inv2 = (mod + 1) / 2, inv6 = modpow(6, mod - 2);
ll modpow(ll a, int b) {
ll res = 1;
for (; b; b >>= 1) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
}
return res;
}
struct Result { ll f, g, h; };
Result extgcd(ll a, ll b, ll c, ll n) {
if (a == 0) return (Result) { b / c * (n + 1) % mod,
n * (n + 1) / 2 % mod * (b / c) % mod,
(b / c) * (b / c) % mod * (n + 1) % mod };
if (a >= c || b >= c) {
Result lst = extgcd(a % c, b % c, c, n);
ll ta = n * (n + 1) / 2 % mod, tb = n * (n + 1) % mod * (2 * n + 1) % mod * inv6 % mod;
ll ac = a / c, bc = b / c;
return (Result) { (ta * ac + (n + 1) * bc + lst.f) % mod,
(tb * ac + ta * bc + lst.g) % mod,
(tb * ac % mod * ac + (n + 1) * bc % mod * bc + ta * 2 * ac % mod * bc + 2 * lst.g * (a / c) + 2 * lst.f * (b / c) + lst.h) % mod };
}
ll m = (a * n + b) / c;
Result lst = extgcd(c, c - b + a - 1, a, m - 1);
return (Result) { ((n + 1) * m - lst.f + mod) % mod,
(m * n % mod * (n + 1) + lst.f - lst.h + 2ll * mod) % mod * inv2 % mod,
(m * m % mod * (n + 1) - 2 * lst.g - lst.f + 3ll * mod) % mod };
}
int main() {
int T, a, b, c, n;
for (scanf("%d", &T); T--;) {
scanf("%d%d%d%d", &n, &a, &b, &c);
Result res = extgcd(a, b, c, n);
printf("%lld %lld %lld\n", res.f, res.h, res.g);
}
return 0;
}