类欧几里得算法推导

第一种

f ( a , b , c , n ) = ∑ i = 0 n a i + b c f(a,b,c,n)=\sum_{i=0}^n\frac{ai+b}{c} f(a,b,c,n)=i=0ncai+b
情况一: a ≥ c   o r   b ≥ c a\ge c~or~b \ge c ac or bc
f ( a , b , c , n ) = f ( a % c , b % c , c , n ) + n ( n + 1 ) 2 ⋅ a c + b c ⋅ ( n + 1 ) f(a,b,c,n)=f(a\%c,b\%c,c,n)+\frac{n(n+1)}{2}\cdot\frac{a}{c}+\frac{b}{c}\cdot(n+1) f(a,b,c,n)=f(a%c,b%c,c,n)+2n(n+1)ca+cb(n+1)
情况二: a < b   a n d   a < c a<b~and~a<c a<b and a<c
f ( a , b , c , n ) = ∑ i = 0 n ∑ j = 1 m [ a i + b ≥ c j ] = ( n + 1 ) m − ∑ j = 0 m − 1 c j + ( c − b + a − 1 ) a = ( n + 1 ) m − f ( c , c − b + a − 1 , a , m − 1 ) f(a,b,c,n)=\sum_{i=0}^n\sum_{j=1}^m[ai+b\ge cj]=(n+1)m-\sum_{j=0}^{m-1}\frac{cj+(c-b+a-1)}{a}=(n+1)m-f(c,c-b+a-1,a,m-1) f(a,b,c,n)=i=0nj=1m[ai+bcj]=(n+1)mj=0m1acj+(cb+a1)=(n+1)mf(c,cb+a1,a,m1)

第二种

g ( a , b , c , n ) = ∑ i = 0 n i a i + b c g(a,b,c,n)=\sum_{i=0}^ni\frac{ai+b}{c} g(a,b,c,n)=i=0nicai+b
情况一: a ≥ c   o r   b ≥ c a\ge c~or~b \ge c ac or bc
g ( a , b , c , n ) = g ( a % c , b % c , c , n ) + n ( n + 1 ) ( 2 n + 1 ) 6 ⋅ a c + n ( n + 1 ) 2 ⋅ b c g(a,b,c,n)=g(a\%c,b\%c,c,n)+\frac{n(n+1)(2n+1)}{6}\cdot\frac{a}{c}+\frac{n(n+1)}{2}\cdot\frac{b}{c} g(a,b,c,n)=g(a%c,b%c,c,n)+6n(n+1)(2n+1)ca+2n(n+1)cb
情况二: a < b   a n d   a < c a<b~and~a<c a<b and a<c
g ( a , b , c , n ) = ∑ i = 0 n i ∑ j = 1 m [ a i + b ≥ c j ] = g(a,b,c,n)=\sum_{i=0}^ni\sum_{j=1}^m[ai+b\ge cj]= g(a,b,c,n)=i=0nij=1m[ai+bcj]=
1 2 ( m n ( n + 1 ) − ∑ j = 0 m − 1 ( c j + ( c − b + a − 1 ) a ) 2 + ∑ j = 0 m − 1 c j + ( c − b + a − 1 ) a ) = \frac{1}{2}\left(mn(n+1)-\sum_{j=0}^{m-1}\left(\frac{cj+(c-b+a-1)}{a}\right)^2+\sum_{j=0}^{m-1}\frac{cj+(c-b+a-1)}{a}\right)= 21(mn(n+1)j=0m1(acj+(cb+a1))2+j=0m1acj+(cb+a1))=
1 2 ( m n ( n + 1 ) − h ( c , c − b + a − 1 , a , m − 1 ) + f ( c , c − b + a − 1 , a , m − 1 ) ) \frac{1}{2}(mn(n+1)-h(c,c-b+a-1,a,m-1)+f(c,c-b+a-1,a,m-1)) 21(mn(n+1)h(c,cb+a1,a,m1)+f(c,cb+a1,a,m1))

第三种

h ( a , b , c , n ) = ∑ i = 0 n ( a i + b c ) 2 h(a,b,c,n)=\sum_{i=0}^n\left(\frac{ai+b}{c}\right)^2 h(a,b,c,n)=i=0n(cai+b)2
情况一: a ≥ c   o r   b ≥ c a\ge c~or~b \ge c ac or bc
h ( a , b , c , n ) = n ( n + 1 ) ( 2 n + 1 ) 6 ⋅ ( a c ) 2 + ( b c ) 2 ⋅ ( n + 1 ) + a c ⋅ b c n ( n + 1 ) + h(a,b,c,n)=\frac{n(n+1)(2n+1)}{6}\cdot\left(\frac{a}{c}\right)^2+\left(\frac{b}{c}\right)^2\cdot(n+1)+\frac{a}{c}\cdot\frac{b}{c}n(n+1)+ h(a,b,c,n)=6n(n+1)(2n+1)(ca)2+(cb)2(n+1)+cacbn(n+1)+
2 a c g ( a % c , b % c , c , n ) + 2 b c f ( a % c , b % c , c , n ) + h ( a % c , b % c , c , n ) 2\frac{a}{c}g(a\%c,b\%c,c,n)+2\frac{b}{c}f(a\%c,b\%c,c,n)+h(a\%c,b\%c,c,n) 2cag(a%c,b%c,c,n)+2cbf(a%c,b%c,c,n)+h(a%c,b%c,c,n)
情况二: a < b   a n d   a < c a<b~and~a<c a<b and a<c
h ( a , b , c , n ) = ∑ i = 0 n ∑ j = 1 m [ a i + b ≥ c j ] ( 2 j − 1 ) = ∑ j = 0 m − 1 ( 2 j + 1 ) ( n + 1 − c j + ( c − b + a − 1 ) a ) = h(a,b,c,n)=\sum_{i=0}^n\sum_{j=1}^m[ai+b\ge cj](2j-1)=\sum_{j=0}^{m-1}(2j+1)\left(n+1-\frac{cj+(c-b+a-1)}{a}\right)= h(a,b,c,n)=i=0nj=1m[ai+bcj](2j1)=j=0m1(2j+1)(n+1acj+(cb+a1))=
m 2 ( n + 1 ) − 2 g ( c , c − b + a − 1 , a , m − 1 ) − f ( c , c − b + a − 1 , a , m − 1 ) m^2(n+1)-2g(c,c-b+a-1,a,m-1)-f(c,c-b+a-1,a,m-1) m2(n+1)2g(c,cb+a1,a,m1)f(c,cb+a1,a,m1)

大板子

洛谷P5170

#include 
using namespace std;
typedef long long ll;

ll modpow(ll a, int b);
const int mod = 998244353, inv2 = (mod + 1) / 2, inv6 = modpow(6, mod - 2);
ll modpow(ll a, int b) {
    ll res = 1;
    for (; b; b >>= 1) {
        if (b & 1) res = res * a % mod;
        a = a * a % mod;
    }
    return res;
}
struct Result { ll f, g, h; };
Result extgcd(ll a, ll b, ll c, ll n) {
    if (a == 0) return (Result) { b / c * (n + 1) % mod,
        n * (n + 1) / 2 % mod * (b / c) % mod,
        (b / c) * (b / c) % mod * (n + 1) % mod };
    if (a >= c || b >= c) {
        Result lst = extgcd(a % c, b % c, c, n);
        ll ta = n * (n + 1) / 2 % mod, tb = n * (n + 1) % mod * (2 * n + 1) % mod * inv6 % mod;
        ll ac = a / c, bc = b / c;
        return (Result) { (ta * ac + (n + 1) * bc + lst.f) % mod,
            (tb * ac + ta * bc + lst.g) % mod,
            (tb * ac % mod * ac + (n + 1) * bc % mod * bc + ta * 2 * ac % mod * bc + 2 * lst.g * (a / c) + 2 * lst.f * (b / c) + lst.h) % mod };
    }
    ll m = (a * n + b) / c;
    Result lst = extgcd(c, c - b + a - 1, a, m - 1);
    return (Result) { ((n + 1) * m - lst.f + mod) % mod,
        (m * n % mod * (n + 1) + lst.f - lst.h + 2ll * mod) % mod * inv2 % mod,
        (m * m % mod * (n + 1) - 2 * lst.g - lst.f + 3ll * mod) % mod };
}
int main() {
    int T, a, b, c, n;
    for (scanf("%d", &T); T--;) {
        scanf("%d%d%d%d", &n, &a, &b, &c);
        Result res = extgcd(a, b, c, n);
        printf("%lld %lld %lld\n", res.f, res.h, res.g);
    }
    return 0;
}

你可能感兴趣的:(数论)