- Azure和Transformers的详细解释
漫天飞舞的雪花
azuremicrosoftpython
AzureAI是微软提供的人工智能(AI)解决方案的集合,旨在帮助开发人员、数据科学家和企业轻松构建和部署智能应用程序。以下是对AzureAI各个方面的详细解释:AzureAI主要组件AzureCognitiveServices(认知服务):计算视觉:包括图像识别、物体检测、人脸识别以及图像标注等。语音服务:包括语音识别、语音合成、说话人识别和语音翻译等。语言理解服务:包括文本分析、语言翻译、情感
- PyTorch(超详细)部署与激活 举起Python火炬,点亮智慧人生【Windows版】
心安成长
PyTorchpythonpytorchwindows
AI时代,我们不仅要学习Python,同时机器学习,深度学习利器也要逐步掌握,再次开始Pytorch学习教程记录。PyTorch是一个流行的开源深度学习框架,它可以用于构建、训练和部署各种机器学习和深度学习模型。PyTorch可以用于以下领域:计算机视觉:图像分类、目标检测、图像分割、人脸识别等。自然语言处理:机器翻译、文本分类、情感分析、问答系统等。语音处理:语音识别、语音合成、说话人识别等。生
- PFEA113-65 3BSE050092R65
DCS17750010683
fpga开发机器人自动化模块测试驱动开发
PFEA113-653BSE050092R65PFEA113-653BSE050092R65PFEA113-653BSE050092R65说话人识别系统中VQ判决模块的FPGA实现...后,clr_tag有效。该模块接收来自初始化模块的load_tv使能信号,....2.2码本接口收到初始化模块的load_code信号后,开始产生地址...的话路号,输出至运算控制模块,同时使load_tv、loa
- 【CCF BDCI 2023】多模态多方对话场景下的发言人识别 Baseline 0.71 概述
我是小白呀
ccfbdciccfbdci多模态多方对话竞赛
【CCFBDCI2023】多模态多方对话场景下的发言人识别Baseline0.71概述模型简介基于CNN的判断每张人脸是否是说话人的模型基于Transformer-Encoder的判断同一段对话中不同轮次的说话人关系的模型说话人识别求解器文件结构如何运行代码(以5turns为例)模型简介本基线模型共分为三个部分:基于CNN的判断每张人脸是否是说话人的模型;基于Transformer-Encoder
- 经验模式分解(EMD)及希尔伯特-黄变换(HHT)简介及matlab实现
一弦-sring
语音处理及matlab信号处理机器学习语音识别
本文介绍过程涉及到两个链接工具包,可以自己网上搜索下载,以下提供了网盘下载的地址,因为作者主要做语音方面工作,所以后面的说明主要以说话人识别为例。(链接:https://pan.baidu.com/s/1LWzlEO6Vp7CqInjqPnV8_A提取码:zga8)一、经验模式分解(EMD)关于经验模态分解的概念,网上有很多具体的讲解,这里就不进行细说,具体过程可以参考https://blog.c
- 基于支持向量机 (SVM) 和稀疏表示理论 (SRC) 的人脸识别比较
西部小狼_
一背景1.1支持向量机简介支持向量机(SupportVectorMachine,SVM)是AT&TBell实验室的V.Vapnik等人提出的一种机器学习算法,是迄今为止最重要的机器学习理论和方法之一,也是应用最广泛、综合效果最好的模式分类技术之一。到目前为止,支持向量机已应用于孤立手写字符识别、网页或文本自动分类、说话人识别、人脸检测、性别分类、计算机入侵检测、基因分类、遥感图象分析、目标识别、函
- 说话人识别声纹识别CAM++,ECAPA-TDNN等算法
loong_XL
深度学习语音识别
参考:https://www.modelscope.cn/models?page=1&tasks=speaker-verification&type=audiohttps://github.com/alibaba-damo-academy/3D-Speaker/blob/main/requirements.txt单个声纹比较可以直接modelscope包运行frommodelscope.pipel
- MFA-Conformer
shadowismine
语音识别深度学习计算机视觉人工智能
基于多尺度特征聚合Conformer说话人识别模型的创新与应用论文:https://arxiv.org/abs/2203.15249代码:GitHub-zyzisyz/mfa_conformer收录于INTERSPEECH20221.简介本文由清华大学与腾讯科技(北京)有限公司、台湾大学及香港中文大学合作。提出了一种基于Conformer的多尺度特征融合的说话人识别模型(MFA-Conformer
- An Enhanced Res2Net with Local and Global Feature Fusion for Speaker Verification
shadowismine
1024程序员节
1.Overview论文题目:AnEnhancedRes2NetwithLocalandGlobalFeatureFusionforSpeakerVerification论文单位:阿里巴巴集团,中国科学技术大学核心内容:有效融合多尺度特征对于提高说话人识别性能至关重要。现有的大多数方法通过简单的操作,如特征求和或拼接,并采用逐层聚合的方式获取多尺度特征。本文提出了一种新的架构,称为增强式Res2N
- 进阶课1——声纹识别
AI 智能服务
AI训练师人工智能语音识别深度学习人机交互搜索引擎
声纹识别是一种生物识别技术,也称为说话人识别,包括说话人辨认和说话人确认两种技术。该技术通过将声信号转换成电信号,再使用计算机进行识别,不同的任务和应用会使用不同的声纹识别技术,例如在缩小刑侦范围时可能需要辨认技术,而在银行交易时则需要确认技术。1.概述2.声纹识别原理声纹识别的技术原理可以分为两个主要步骤:特征提取和模式匹配(模式识别)。在特征提取阶段,声纹识别系统会提取并选择对说话人的声纹具有
- TDNN方法学习
shadowismine
学习深度学习人工智能
TDNN方法简介TDNN(TimeDelayNeuralNetwork,时延神经网络)是用于处理序列数据的,比如:一段语音、一段文本将TDNN和统计池化(StatisticsPooling)结合起来,正如x-vector的网络结构,可以处理任意长度的序列x-vector的网络结构x-vector是用于文本无关的说话人识别的,因此需要处理任意长度的序列,其网络结构如下图所示:输入:每个特征图表示一帧
- matlab音频信号处理实验报告,基于MATLAB的LPC分析_语音信号处理实验报告.doc
weixin_42545066
基于MATLAB的LPC分析_语音信号处理实验报告.doc南京信息工程大学实验(实习)报告实验(实习)名称基于MATLAB的LPC分析实验(实习)日期2013.5.2得分_指导教师院电子与信息工程专业电子信息工程年级班次姓名学号一、实验目的线性预测分析是最有效的语音分析技术之一,在语音编码、语音合成、语音识别和说话人识别等语音处理领域中得到了广泛的应用。语音线性预测的基本思想是一个语音信号的抽样值
- Whisper + NemoASR + ChatGPT 实现语言转文字、说话人识别、内容总结等功能
cybozu开发者
技术前沿whisperchatgpt
引言2023年,IT领域的焦点无疑是ChatGPT,然而,同属OpenAI的开源产品Whisper似乎鲜少引起足够的注意。Whisper是一款自动语音识别系统,可以识别来自99种不同语言的语音并将其转录为文字。如果说ChatGPT为计算机赋予了大脑,那么Whisper则为其赋予了耳朵。想象一下,在企业应用领域,我们能够利用Whisper将语音转化为文字,然后再借助ChatGPT来进行翻译或总结。接
- Whisper + NemoASR + ChatGPT 实现语言转文字、说话人识别、内容总结等功能
chatgpt
引言2023年,IT领域的焦点无疑是ChatGPT,然而,同属OpenAI的开源产品Whisper似乎鲜少引起足够的注意。Whisper是一款自动语音识别系统,可以识别来自99种不同语言的语音并将其转录为文字。如果说ChatGPT为计算机赋予了大脑,那么Whisper则为其赋予了耳朵。想象一下,在企业应用领域,我们能够利用Whisper将语音转化为文字,然后再借助ChatGPT来进行翻译或总结。接
- 论文分享丨西工大音频语音与语言处理研究组四篇论文被IEEE Trans. ASLP和SPL录用
语音之家
智能语音音视频语音识别人工智能
近日,实验室三篇论文被语音研究顶级期刊IEEE/ACMTransactionsonAudio,SpeechandLanguageProcessing(TASLP)录用,一篇论文被重要期刊IEEESignalProcessingLetters(IEEESPL)录用,论文方向涉及说话人识别中的对抗攻击、基于扩散模型的跨语种情感迁移语音合成、语音转换中基于多层级韵律建模的风格迁移、基于语言模型的语音转换
- 语音识别对于智能机器人为什么重要
21世纪的机器猫
语音识别技术,也被称为自动语音识别(英语:AutomaticSpeechRecognition,ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如二进制编码或者字符序列。与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。简单来说就是是区分说话人的声音是否是说话人本人,同时确认说话人的词汇内容。那么语音识别如何运用到智能机器人当中呢。语音是
- ICASSP 2023说话人识别方向论文合集
语音之家
智能语音人工智能
今年入选ICASSP2023的论文中,说话人识别(声纹识别)方向约有64篇,初步划分为SpeakerVerification(31篇)、SpeakerRecognition(9篇)、SpeakerDiarization(17篇)、Anti-Spoofing(4篇)、others(3篇)五种类型。本文是ICASSP2023说话人识别方向论文合集系列的最后一期,整理了SpeakerRecognitio
- NeMo 声纹识别VPR-实战
wxl781227
ASR实战人工智能声纹识别声纹验证
声纹识别(VPR),生物识别技术的一种,也称为说话人识别,是从说话人发出的语音信号中提取声纹信息,从应用上看,可分为:说话人辨认(SpeakerIdentification):用以判断某段语音是若干人中的哪一个所说的,是“多选一”问题;说话人确认(SpeakerVerification):用以确认某段语音是否是指定的某个人所说的,是“一对一判别”问题。本文主要是识别两个声音是否为同一个人。应用场景
- HIT SPLAB端到端说话人识别演示系统说明
ChongmingLiu
部署环境要求python3.0+sklearnnumpytensorflowpyprindpyaudioscipypython_speech_features目录结构说明speaker_recognition_demonstrationmodelmodel_of_extractor_with_attentionparams_1.jsonspk_modelspeaker_model.modelreg
- 使用tensorflow和densenet神经网路实现语谱图声纹识别,即说话人识别。
zhigongjz
神经网络CNN卷积TensorflowDensenet语谱图声纹识别
介绍本文介绍一种使用tensorflow框架和densenet神经网路实现声纹语谱图识别算法,即说话人识别。本文侧重一种解决方案的思路,仅做了小批量数据的简单验证,收敛效果良好,还没有做大量数据集的验证,后期会做一些实际的验证,请持续关注。如果乐意与我交流,文章后面有联系方式,随时欢迎。代码地址码云:https://gitee.com/lizhigong/VoiceprintRecognition
- NPU-ASLP实验室11篇论文被语音旗舰会议Interspeech2023录用
语音之家
语音之家活动专区人工智能语音识别
作为语音相关研究领域的旗舰国际会议,INTERSPEECH2023将于8月20-24日在爱尔兰都柏林举办。西工大音频语音与语言处理研究组(ASLP@NPU)本届会议将携合作伙伴宣读论文11篇,涉及智能语音处理领域的众多研究方向,包括语音识别、语音合成与转换、语音翻译、说话人识别等。论文的合作单位包括:腾讯、网易、华为、字节跳动、出门问问、滴滴出行、阿里巴巴等。以下是本届会议发表论文的相关信息,附带
- 达摩院开源工业级说话人识别模型CAM++
语音之家
智能语音人工智能深度学习机器学习
近日,达摩院正式向公众开源工业级说话人识别通用模型CAM++,兼顾准确率和计算效率,训练labels类别达20万,每类含20~200条梅尔频谱特征。当前该模型已上线Modelscope魔搭社区,后续将陆续开源针对各场景优化的工业级模型。模型下载地址:https://www.modelscope.cn/models/damo/speech_campplus_sv_zh-cn_16k-common/s
- 三点几嚟,饮茶先啦!PaddleSpeech发布全流程粤语语音合成
飞桨PaddlePaddle
技术干货人工智能语音识别深度学习机器学习
PaddleSpeech是飞桨开源语音模型库,其提供了一套完整的语音识别、语音合成、声音分类和说话人识别等多个任务的解决方案。近日,PaddleSpeech迎来了重要更新——r1.4.0版本。在这个版本中,PaddleSpeech带来了中文wav2vec2.0fine-tune流程、升级的中英文语音识别以及全流程粤语语音合成等重要更新。接下来,我们将详细介绍这些更新内容以及亮点。中文wav2vec
- 语音数据添加噪声
末世灯光
python语音识别个人通过各种教程的总结语音识别人工智能python
语音数据添加高斯噪声或白噪声,取决于所需要的应用场景。如果需要模拟真实世界中的环境噪声,例如在语音识别或说话人识别任务中,通常会使用高斯噪声来模拟背景噪声。因为真实的环境噪声往往也是由许多不同频率和强度的声波混合而成,而高斯噪声正好能够模拟这种混合声波的效果。此外,由于语音信号与高斯噪声之间存在一定的相关性,因此使用高斯噪声可以更好地模拟真实环境中的语音信号。#设置噪声级别noise_level=
- 【论文阅读】X-vectors: Robust DNN Embedding for Speaker Recognition
abcdhhhh_
论文阅读dnn深度学习
文章链接参考关键词说话人识别、DNN、数据增强、x-vectors主要工作本文所用的DNN可接受任意长度的输入,并转换成固定长度的表达(即x-vector)。(在训练数据量不足的情况下,采用了数据增强)(与i-vector对比,发现数据增强对i-vector没有帮助,但对x-vectorDNN帮助很大)本文所用DNN的结构可参见另一篇文章(文章链接),如图所示:包括多层时间延迟结构、1层统计池化层
- python语音识别技术实验报告_语音识别系统实验报告.docx
RUI老师
语音识别系统实验报告概要语音识别系统实验报告专业班级:信息安全学号:姓名:目录设计任务及要求………………………………………………1语音识别的简单介绍2.1语者识别的概念……………………………………………22.2特征参数的提取……………………………………………32.3用矢量量化聚类法生成码本………………………………32.4VQ的说话人识别…………………………………………4算法程序分析3.1函数关系…
- 以应用为导向,看声纹识别中的音频伪造问题
语音之家
智能语音网络语音识别人工智能
声纹识别,又称说话人识别,是根据语音信号中的声纹特征来识别话者身份的过程,也是一种重要的生物认证手段。历经几十年的研究,当前声纹识别系统已取得了令人满意的性能表现,并在安防、司法、金融、家居等诸多领域中完成部署,有着广阔的应用前景。然而,大量证据表明,这些系统在实际应用中容易受到恶意伪造行为的影响,致使系统的安全性存在很大隐患,在很大程度上限制了声纹识别技术的大规模推广应用。为了解决这一安全隐患,
- 声纹识别技术简介
xiaocao9903
声纹识别ivector
声纹识别技术简介——化繁为简的艺术2017年11月26日14:20:20阅读数:1406最近一直在看说话人识别的文章,个人觉得写的比较全面,逻辑比较清晰的,腾讯优图的声纹识别技术简介综述写的很好,推荐给大家!声纹识别,也称作说话人识别,是一种通过声音判别说话人身份的技术。从直觉上来说,声纹虽然不像人脸、指纹的个体差异那样直观可见,但由于每个人的声道、口腔和鼻腔也具有个体的差异性,因此反映到声音上也
- 声纹识别技术综述
奇解
声纹识别
转载一篇声纹识别的综述,写的很好原文地址:https://blog.csdn.net/jojozhangju/article/details/78637118最近一直在看说话人识别的文章,个人觉得写的比较全面,逻辑比较清晰的,腾讯优图的声纹识别技术简介综述写的很好,推荐给大家!声纹识别,也称作说话人识别,是一种通过声音判别说话人身份的技术。从直觉上来说,声纹虽然不像人脸、指纹的个体差异那样直观可见
- (阅读)MPC-BERT: A Pre-Trained Language Model for Multi-Party Conversation Understanding
aiyouyou_
论文阅读nlpbert自然语言处理深度学习
论文地址代码标题MPC-BERT:一种用于多方对话理解的预训练语言模型摘要最近,用于多方对话(MPC)的各种神经网络模型在诸如接收人(addressee)识别、说话人识别和回复预测等任务上取得了令人印象深刻的改进。然而,现有的MPC方法通常都是将对话者和对话语句单独表征,而忽略了MPC固有的复杂结构,这种结构可以提供关键的对话者和对话语句语义信息,从而增强会话理解过程。为此,我们提出了MPC-BE
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round