【西瓜书笔记02】标准梯度下降和随机梯度下降

参考资料:
1.标准梯度下降法和随机梯度下降法的区别
2.梯度下降与随机梯度下降

主要区别概括

1.标准下降时在权值更新前汇总所有样例得到的标准梯度,随机下降则是通过考察每次训练实例来更新。

2.对于步长 η的取值,标准梯度下降的η比随机梯度下降的大。因为标准梯度下降的是使用准确的梯度,理直气壮地走,随机梯度下降使用的是近似的梯度,就得小心翼翼地走,怕一不小心误入歧途南辕北辙了。

3.当E(w)有多个局部极小值时,随机梯度反而更可能避免进入局部极小值中。

标准梯度下降的问题:

普通的梯度下降算法在更新回归系数时要遍历整个数据集,是一种批处理方法,这样训练数据特别忙庞大时,可能出现如下问题:
1)收敛过程可能非常慢;

2)如果误差曲面上有多个局极小值,那么不能保证这个过程会找到全局最小值。

你可能感兴趣的:(西瓜书,机器学习)