- 鸿蒙HarmonyOS开发系列:WebSocket消息发送应用示例
太空人_喜之郎
HarmonyOS鸿蒙OpenHarmonyharmonyos华为前端linux鸿蒙移动开发程序员
1.WebSocket简介WebSocket协议最初于2011年通过RFC6455完成了标准定义,后来又通过RFC7936、RFC8307、RFC8441等标准对协议进行了完善。WebSocket位于网络分层模型的应用层,是建立在TCP之上的双向通讯协议,可以在一个TCP连接上进行全双工通信;和HTTP不同的是,WebSocket通讯需要服务端和客户端先通过握手连接,连接成功后才能相互通信。2.W
- 【机器学习】基于t-SNE数据可视化工程
无水先生
AI原理和python实现人工智能综合人工智能算法
一、说明t-SNE(t-DistributedStochasticNeighborEmbedding)是一种常用的非线性降维技术。它可以将高维数据映射到一个低维空间(通常是2D或3D)来便于可视化。Scikit-learnAPI提供TSNE类,以使用T-SNE方法可视化数据。在本教程中,我们将简要学习如何在Python中使用TSNE拟合和可视化数据。二、t-SNE是个什么?2.1什么是t-SNE?
- 数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践
kkchenkx
数据挖掘信息可视化算法聚类均值算法数据挖掘机器学习
数据处理和分析之数据降维:t-SNE:使用t-SNE进行数据可视化实践数据降维简介降维技术的重要性在数据科学和机器学习领域,数据降维是一种关键的技术,用于减少数据集的维度,同时保留数据的结构和重要信息。降维不仅可以帮助我们更有效地存储和处理数据,还能在高维数据中发现潜在的模式和结构,这对于数据可视化和模型训练尤为重要。高维数据往往难以直观理解,通过降维,我们可以将其转换为二维或三维空间,便于可视化
- 第20篇:从零开始构建NLP项目之电商用户评论分析:模型训练阶段
Gemini技术窝
自然语言处理人工智能深度学习AIGC机器学习nlplangchain
大家好,今天我们继续探讨如何从零开始构建一个NLP项目,特别是电商用户评论分析中的模型训练阶段。模型训练是NLP项目的核心环节,通过合理的调参和优化,可以显著提升模型性能。本文将详细介绍模型训练的步骤,并展示如何使用LangChain库进行模型训练、调参和优化。文章目录项目的背景和目标模型训练的详细步骤安装依赖包流程图1.准备数据2.定义模型3.训练模型4.评估模型5.调参与优化常见错误和注意事项
- MyBatis注解开发之一对多查询
我心向阳iu
#MybatisJava面试知识点精讲mybatisjavamysql
文章目录0.MyBatis的注解实现复杂映射开发1.一对多查询1.1一对多查询的模型1.2一对多查询的语句1.3创建StudentMapper接口1.4使用注解配置Mapper1.5测试类1.6一对多配置总结0.MyBatis的注解实现复杂映射开发实现复杂关系映射之前我们可以在映射文件中通过配置来实现,使用注解开发后,我们可以使用@Results注解,@Result注解,@One注解,@Many注
- 高效快速教你deepseek如何进行本地部署并且可视化对话
chatgpt
随着最近一个新的人工智能deepseek的爆火,很多大佬都开始了在本地进行deepseek的部署操作,并且离线也可以使用,这里的话我就一步一步带你们部署本地的deepseek,说实话这个人工智能的实力不亚于openai的gpt安装ollama我们需要先安装ollama,安装地址ollama,我们直接点击下载,我们在下载的时候尽量使用我们的谷歌浏览器,有魔法的最好带上魔法,不然安装的时候可能会出问题
- 79.HarmonyOS NEXT 手势操作模型详解:移动、缩放与旋转的实现原理
harmonyos-next
温馨提示:本篇博客的详细代码已发布到git:https://gitcode.com/nutpi/HarmonyosNext可以下载运行哦!HarmonyOSNEXT手势操作模型详解:移动、缩放与旋转的实现原理1.模型概述这组模型类主要用于处理手势交互中的各种变换操作,包括:位置控制(PositionModel)偏移计算(OffsetModel)旋转处理(RotateModel)缩放控制(Scale
- 使用yolo训练自己的模型数据遇到的问题
次次皮
YOLO深度学习人工智能
1、报错:NolabelsfoundinD:\xxx\valid\labels.cache查找网上的文章大多都是说文件目录没按规定创建,但我检查了我的目录没问题,后来发现是labels文件夹里的txt文件和images文件夹的图片没有一一对应,对应好之后问题解决2、解决完上个问题之后还是不报上面的错了但还是FatalPythonerror:Aborted;Restartingkernel...检查
- 中国首款AI原生IDE:字节跳动Trae国内版深度解析与实践指南
代码的建筑师
学习记录模型学习笔记AIIDETrae字节跳动AI代码编辑器
一、Trae国内版重磅发布:中国AI编程新标杆2025年3月3日,字节跳动正式推出国内首个AI原生集成开发环境(AIIDE)——Trae国内版。作为对标Cursor的国产工具,Trae以动态智能协作为核心,重新定义开发者与AI的协同模式。其核心目标是通过深度集成AI能力,帮助开发者从“工具使用者”向“AI协同创新者”转型,显著提升全流程开发效率。关键发布亮点:模型支持:搭载字节自研的Doubao-
- 大模型火爆 2025:LLaMA、Qwen、DeepSeek 核心原理+就业秘籍,快速入门 AI 工程师
weixin_40941102
llama人工智能
1.大模型核心原理:从零开始理解AI模型这些是大型语言模型(LLMs)的核心技术,适合初学者逐步深入学习。以下是详细拆解,让小白也能掌握:LLaMA系列模型核心原理详解:什么是LLaMA?:LLaMA是一个基于人工智能的语言模型,像一个超级聪明的聊天机器人,能理解和生成人类语言。它由Meta公司开发,类似ChatGPT,但更开源、灵活。核心原理:Transformer架构:想象一个工厂流水线,LL
- 【AI热点】MCP协议深度洞察报告
碣石潇湘无限路
人工智能php开发语言
摘要人工智能技术飞速发展,大型语言模型(LLM)如何高效、安全地利用外部数据和工具成为关键问题。模型上下文协议(ModelContextProtocol,简称MCP)是一种由Anthropic于2024年底提出的开放标准协议。它通过统一的客户端-服务器架构,为AI应用与文件系统、数据库、第三方API等外部资源之间提供标准化、安全的双向通信接口。本文将深入解析MCP协议的基本概念和背景、架构设计(通
- 【AI】Transformer布道:让AI学会“左顾右盼”的超级大脑!(扫盲帖)
碣石潇湘无限路
人工智能transformer深度学习
在LLM爆火的时代,如果还不了解Transformer就太落伍了,下面我第一次尝试用一种更日常、更口语化的方式,把Transformer这个模型讲个大概。你可以想象我们是从“什么是注意力”开始,一步步搭积木,直到把整个Transformer这台“机器”组装起来,然后再看看它能干什么、怎么训练、为什么厉害。主要目的就是帮助更多的非AI专业的人群入门和了解实现AGI的底层架构。1.为什么要有Trans
- 【奇点时刻】通义千问开源QwQ-32B技术洞察报告(扫盲帖)
碣石潇湘无限路
开源人工智能
以下报告将基于今天各大社区对Qwen/QwQ-32B(下文简称「QwQ-32B」)模型的讨论、测评与实测体验进行综合性分析与洞察。本报告将从模型背景与定位、核心技术、性能表现与对比、部署与使用方式,以及未来潜力与可能的影响五个维度,帮助读者更好地了解这一新兴且备受瞩目的开源推理模型。一、模型背景与定位1.发布方与家族概览QwQ-32B模型由阿里巴巴(Alibaba)旗下的Qwen团队推出,属于Qw
- #PyCharm 2024.1新增功能
Dingdangr
pycharmidepython
PyCharm2024.1作为JetBrains专为Python开发者设计的集成开发环境(IDE)的最新版本,带来了众多令人兴奋的新增功能,旨在提升开发者的编程效率和体验。以下是对这些新增功能的详细解析:一、智能编码辅助HuggingFace模型和数据集文档预览PyCharm2024.1引入了HuggingFace模型和数据集的快速文档预览功能。开发者可以直接在PyCharm内部快速获取Huggi
- TensorRT-LLM保姆级教程-快速入门
大模型八哥
笔记agiai大模型ai大模型LLMTransformer
随着大模型的爆火,投入到生产环境的模型参数量规模也变得越来越大(从数十亿参数到千亿参数规模),从而导致大模型的推理成本急剧增加。因此,市面上也出现了很多的推理框架,用于降低模型推理延迟以及提升模型吞吐量。本系列将针对TensorRT-LLM推理进行讲解。本文为该系列第一篇,将简要概述TensorRT-LLM的基本特性。另外,我撰写的大模型相关的博客及配套代码均整理放置在Github,有需要的朋友自
- 使用agent搭建一个简易的ai论文写作程序
喂喂喂喂位
langChain手搓AIAgent记录人工智能langchain深度学习pythonAIGC
本程序能够自动化完成从规划、研究、撰写到修改的整个论文创作流程。基于LangGraph和LangChain框架构建,利用大型语言模型和搜索工具协同工作,形成了一个完整的论文写作流水线。核心功能分析计划生成功能(plan_node)这个node将接收状态,然后创建一个消息列表。其中一个将是PLAN_PROMPT,那将是SystemMessage。然后创建HumanMessage,传入我们要做的tas
- DeepSeek:技术创作者的内容革命,从代码到爆文的AI全栈攻略
不想加班的码小牛
人工智能aichatgpt
一、为什么技术创作者需要关注DeepSeek?作为CSDN的资深用户,你是否经历过这些痛点?选题焦虑:技术热点日新月异,如何抓住「大模型优化」或「量子计算落地」等前沿方向?写作卡顿:明明代码跑通了,却在技术原理描述环节反复修改效率瓶颈:既要写技术文档又要运营专栏,时间永远不够用DeepSeek的多模态理解能力(支持代码+自然语言混合输入)和领域自适应特性(自动识别技术文档/教程/测评等文体),让它
- SDN架构解密:控制面如何“指挥”万亿级网络? ——基于“大脑-四肢”模型的三层架构深度解析
不想加班的码小牛
网络架构人工智能ai
摘要本文以“大脑-四肢”类比SDN三层架构,揭示控制器如何通过全局视图管理、南向接口标准化(如OpenFlow)与北向API开放能力,实现对万亿级网络的集中化控制。文中包含OpenFlow协议代码示例、网络拓扑公式及架构图,力求呈现技术细节与实战价值。一、SDN架构的“大脑-四肢”隐喻SDN通过控制平面-数据平面-应用平面的三层架构,构建了网络控制的“中枢神经系统”:控制层(大脑):集中式控制器掌
- NPU的应用场景:从云端到边缘
绿算技术
NPU架构介绍缓存人工智能科技深度学习
NPU的应用场景非常广泛,主要包括以下几个方面:1.云计算与数据中心AI推理服务:在云端提供高效的AI推理服务,例如图像识别、语音识别。模型训练加速:在大规模训练任务中,NPU可以作为加速单元,提升训练效率。2.边缘计算智能摄像头:在安防监控中,NPU可以实时处理视频流,实现目标检测和跟踪。智能音箱:在语音助手中,NPU可以加速语音识别和自然语言处理任务。3.自动驾驶实时感知:NPU可以加速自动驾
- NPU的工作原理:神经网络计算的流水线
绿算技术
NPU架构介绍神经网络人工智能深度学习
NPU的工作原理可以概括为以下几个步骤:1.模型加载·将训练好的神经网络模型加载到NPU的内存中。2.数据输入·输入数据(如图像、语音)通过接口传输到NPU。3.计算执行·NPU根据模型结构,依次执行卷积、池化、全连接等计算任务。·矩阵乘法单元和卷积加速器并行工作,高效完成计算。4.结果输出·计算完成后,输出结果(如分类标签、检测框)返回给主机或其他处理器。5.任务调度·在多任务场景下,NPU的任
- GPU的优势:并行计算的利器
绿算技术
GPU架构介绍科技gpu算力
GPU相较于CPU,在并行计算方面具有以下优势:强大的并行计算能力:GPU拥有成千上万个计算核心,能够同时执行大量的线程,非常适合处理数据并行性高的任务。高内存带宽:GPU配备了高带宽的内存子系统,能够快速地将数据传输到计算核心,满足大规模数据处理的需求。高效的线程调度:GPU采用硬件多线程技术,能够快速地切换线程上下文,最大限度地提高计算资源的利用率。灵活的编程模型:GPU提供了丰富的编程模型和
- LINUX下的tcp协议
Ccc030.
linuxtcp/ip运维
TCP1.面向数据流(流式套接字)2.建立连接3.安全可靠的传输协议应用场景:HTTP,MQTT,FTP三次握手:TCP建立连接时,需要进行三次握手,确保收发数据前,双方都已准备就绪。四次挥手:TCP断开连接时,需要进行四次挥手,从而确保通信双发都已收发数据结束。C/S模型:ssize_trecv(intsockfd,void*buf,size_tlen,intflags);功能:从tcp套接字接
- 警惕!Ollama大模型工具的安全风险及应对策略
码事漫谈
AI安全
文章目录**Ollama的安全隐患:不容忽视的风险****未授权访问:门户洞开的风险****数据泄露:敏感信息的外泄****漏洞利用:历史遗留的隐患****安全加固:守护数据与服务的防线****限制监听范围:内网隔离的保护****配置防火墙规则:双向过滤的防御****实施多层认证与访问控制:密钥与白名单的双重保障****禁用危险操作接口:限制权限的策略****修复历史漏洞:及时更新的重要性****
- 孪生网络模型,当训练集与测试集共用一个数据集时,训练准确率为100%,而测试准确率仍在50%左右浮动
bug菌¹
全栈Bug调优(实战版)pytorch机器学习
本文收录于《全栈Bug调优(实战版)》专栏,主要记录项目实战过程中所遇到的Bug或因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!问题描述【问题】孪生网络模型,测试效果异常:当训练集与测试集共用一个数据集(样本、标签完全相同)时,训练准确率为100%,而测试准确率仍在50%左右浮动(正常来说测试的都
- 必看!一文读懂知识蒸馏技术
小天才学习机打游戏
人工智能知识图谱神经网络langchainwindows
导读最近,DeepSeek的爆火让大家对人工智能领域的技术发展又有了新的关注。而知识蒸馏作为深度学习中一项重要的技术,也在背后默默地发挥着作用,今天就来给大家详细介绍一下知识蒸馏及其相关原理。1.知识蒸馏是什么在深度学习领域,大型模型(如DeepSeek)通常具有强大的性能,但它们的计算量和参数量都非常庞大,这使得它们难以在资源受限的设备(如移动设备或嵌入式设备)上部署。例如,GPT-3在570G
- 从零开始大模型开发与微调:PyTorch 2.0深度学习环境搭建
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyTorch2.0深度学习环境搭建作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习在各个领域的广泛应用,大模型开发与微调成为了当前研究的热点。大模型能够学习到丰富的知识,并在各个下游任务上取得优异的性能。然而,大模型开发与微调需要强大的计算资源和专业的知识背景,这对于许多初学者和研究
- Vue3使用ECharts入门示例
牧小七
Vueecharts前端javascript
ApacheECharts介绍一个基于JavaScript的开源可视化图表库。官方网址使用示例第一步:NPM安装EChartsnpminstallecharts--save第二步:使用EChartsimport*asechartsfrom'echarts';constmain=ref()consttu=()=>{//基于准备好的dom,初始化echarts实例varmyChart=echarts.
- Langchain如何调用Siliconflow的模型
LJY_LU
langchainpython开发语言AIGC人工智能数据挖掘nlp
硅基流动之前宣布了部分模型免费,那我们就可以调用API来搞些事情。官网(ChatCompletions(siliconflow.cn))上给出了详细的调用方式,我们可以方便的ctrlC和ctrlV而Langchain支持自定义封装LLM(CustomLLM|️Langchain)那我们就可以结合搞点事情,封装好的代码在这,需要自取:fromlangchain.llms.baseimportLLMf
- 【Java网络编程】OSI七层网络模型与TCP/IP协议簇
xiaoli8748_软件开发
网络通信网络tcp/ip网络协议
1.1、OSI七层网络模型OSI七层网络模型中,每层的功能如下:应用层:人与计算机网络交互的窗口。表示层:负责数据格式的封装,如加密、压缩、编解码等。会话层:建立、终止、管理不同端间的会话连接。传输层:提供端到端(两台机器)之间的传输机制,以及提供流量控制、出错效验。网络层:逻辑寻址,IP地址,在下两层的基础上向资源子网提供服务。数据链路层:负责建立和管理节点间的链路,将数据封装成帧,进行可靠传输
- 如何快速开发一款AI小程序?基于微信云开发的实战指南
一键难忘
人工智能小程序微信
如何快速开发一款AI小程序?基于微信云开发的实战指南引言微信小程序凭借其轻便、易推广等特点,已成为应用开发的重要方式之一。而AI技术的快速发展让智能化应用成为可能。通过微信云开发(CloudBase)与小程序结合,开发者可以实现从前端到后端的一站式AI应用开发。本文将深入讲解如何利用微信云开发快速搭建一款AI小程序,展示从模型训练到云端部署的完整流程。准备工作在开始开发之前,确保完成以下准备工作:
- 微信开发者验证接口开发
362217990
微信 开发者 token 验证
微信开发者接口验证。
Token,自己随便定义,与微信填写一致就可以了。
根据微信接入指南描述 http://mp.weixin.qq.com/wiki/17/2d4265491f12608cd170a95559800f2d.html
第一步:填写服务器配置
第二步:验证服务器地址的有效性
第三步:依据接口文档实现业务逻辑
这里主要讲第二步验证服务器有效性。
建一个
- 一个小编程题-类似约瑟夫环问题
BrokenDreams
编程
今天群友出了一题:
一个数列,把第一个元素删除,然后把第二个元素放到数列的最后,依次操作下去,直到把数列中所有的数都删除,要求依次打印出这个过程中删除的数。
&
- linux复习笔记之bash shell (5) 关于减号-的作用
eksliang
linux关于减号“-”的含义linux关于减号“-”的用途linux关于“-”的含义linux关于减号的含义
转载请出自出处:
http://eksliang.iteye.com/blog/2105677
管道命令在bash的连续处理程序中是相当重要的,尤其在使用到前一个命令的studout(标准输出)作为这次的stdin(标准输入)时,就显得太重要了,某些命令需要用到文件名,例如上篇文档的的切割命令(split)、还有
- Unix(3)
18289753290
unix ksh
1)若该变量需要在其他子进程执行,则可用"$变量名称"或${变量}累加内容
什么是子进程?在我目前这个shell情况下,去打开一个新的shell,新的那个shell就是子进程。一般状态下,父进程的自定义变量是无法在子进程内使用的,但通过export将变量变成环境变量后就能够在子进程里面应用了。
2)条件判断: &&代表and ||代表or&nbs
- 关于ListView中性能优化中图片加载问题
酷的飞上天空
ListView
ListView的性能优化网上很多信息,但是涉及到异步加载图片问题就会出现问题。
具体参看上篇文章http://314858770.iteye.com/admin/blogs/1217594
如果每次都重新inflate一个新的View出来肯定会造成性能损失严重,可能会出现listview滚动是很卡的情况,还会出现内存溢出。
现在想出一个方法就是每次都添加一个标识,然后设置图
- 德国总理默多克:给国人的一堂“震撼教育”课
永夜-极光
教育
http://bbs.voc.com.cn/topic-2443617-1-1.html德国总理默多克:给国人的一堂“震撼教育”课
安吉拉—默克尔,一位经历过社会主义的东德人,她利用自己的博客,发表一番来华前的谈话,该说的话,都在上面说了,全世界想看想传播——去看看默克尔总理的博客吧!
德国总理默克尔以她的低调、朴素、谦和、平易近人等品格给国人留下了深刻印象。她以实际行动为中国人上了一堂
- 关于Java继承的一个小问题。。。
随便小屋
java
今天看Java 编程思想的时候遇见一个问题,运行的结果和自己想想的完全不一样。先把代码贴出来!
//CanFight接口
interface Canfight {
void fight();
}
//ActionCharacter类
class ActionCharacter {
public void fight() {
System.out.pr
- 23种基本的设计模式
aijuans
设计模式
Abstract Factory:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。 Adapter:将一个类的接口转换成客户希望的另外一个接口。A d a p t e r模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。 Bridge:将抽象部分与它的实现部分分离,使它们都可以独立地变化。 Builder:将一个复杂对象的构建与它的表示分离,使得同
- 《周鸿祎自述:我的互联网方法论》读书笔记
aoyouzi
读书笔记
从用户的角度来看,能解决问题的产品才是好产品,能方便/快速地解决问题的产品,就是一流产品.
商业模式不是赚钱模式
一款产品免费获得海量用户后,它的边际成本趋于0,然后再通过广告或者增值服务的方式赚钱,实际上就是创造了新的价值链.
商业模式的基础是用户,木有用户,任何商业模式都是浮云.商业模式的核心是产品,本质是通过产品为用户创造价值.
商业模式还包括寻找需求
- JavaScript动态改变样式访问技术
百合不是茶
JavaScriptstyle属性ClassName属性
一:style属性
格式:
HTML元素.style.样式属性="值";
创建菜单:在html标签中创建 或者 在head标签中用数组创建
<html>
<head>
<title>style改变样式</title>
</head>
&l
- jQuery的deferred对象详解
bijian1013
jquerydeferred对象
jQuery的开发速度很快,几乎每半年一个大版本,每两个月一个小版本。
每个版本都会引入一些新功能,从jQuery 1.5.0版本开始引入的一个新功能----deferred对象。
&nb
- 淘宝开放平台TOP
Bill_chen
C++c物流C#
淘宝网开放平台首页:http://open.taobao.com/
淘宝开放平台是淘宝TOP团队的产品,TOP即TaoBao Open Platform,
是淘宝合作伙伴开发、发布、交易其服务的平台。
支撑TOP的三条主线为:
1.开放数据和业务流程
* 以API数据形式开放商品、交易、物流等业务;
&
- 【大型网站架构一】大型网站架构概述
bit1129
网站架构
大型互联网特点
面对海量用户、海量数据
大型互联网架构的关键指标
高并发
高性能
高可用
高可扩展性
线性伸缩性
安全性
大型互联网技术要点
前端优化
CDN缓存
反向代理
KV缓存
消息系统
分布式存储
NoSQL数据库
搜索
监控
安全
想到的问题:
1.对于订单系统这种事务型系统,如
- eclipse插件hibernate tools安装
白糖_
Hibernate
eclipse helios(3.6)版
1.启动eclipse 2.选择 Help > Install New Software...> 3.添加如下地址:
http://download.jboss.org/jbosstools/updates/stable/helios/ 4.选择性安装:hibernate tools在All Jboss tool
- Jquery easyui Form表单提交注意事项
bozch
jquery easyui
jquery easyui对表单的提交进行了封装,提交的方式采用的是ajax的方式,在开发的时候应该注意的事项如下:
1、在定义form标签的时候,要将method属性设置成post或者get,特别是进行大字段的文本信息提交的时候,要将method设置成post方式提交,否则页面会抛出跨域访问等异常。所以这个要
- Trie tree(字典树)的Java实现及其应用-统计以某字符串为前缀的单词的数量
bylijinnan
java实现
import java.util.LinkedList;
public class CaseInsensitiveTrie {
/**
字典树的Java实现。实现了插入、查询以及深度优先遍历。
Trie tree's java implementation.(Insert,Search,DFS)
Problem Description
Igna
- html css 鼠标形状样式汇总
chenbowen00
htmlcss
css鼠标手型cursor中hand与pointer
Example:CSS鼠标手型效果 <a href="#" style="cursor:hand">CSS鼠标手型效果</a><br/>
Example:CSS鼠标手型效果 <a href="#" style=&qu
- [IT与投资]IT投资的几个原则
comsci
it
无论是想在电商,软件,硬件还是互联网领域投资,都需要大量资金,虽然各个国家政府在媒体上都给予大家承诺,既要让市场的流动性宽松,又要保持经济的高速增长....但是,事实上,整个市场和社会对于真正的资金投入是非常渴望的,也就是说,表面上看起来,市场很活跃,但是投入的资金并不是很充足的......
 
- oracle with语句详解
daizj
oraclewithwith as
oracle with语句详解 转
在oracle中,select 查询语句,可以使用with,就是一个子查询,oracle 会把子查询的结果放到临时表中,可以反复使用
例子:注意,这是sql语句,不是pl/sql语句, 可以直接放到jdbc执行的
----------------------------------------------------------------
- hbase的简单操作
deng520159
数据库hbase
近期公司用hbase来存储日志,然后再来分析 ,把hbase开发经常要用的命令找了出来.
用ssh登陆安装hbase那台linux后
用hbase shell进行hbase命令控制台!
表的管理
1)查看有哪些表
hbase(main)> list
2)创建表
# 语法:create <table>, {NAME => <family&g
- C语言scanf继续学习、算术运算符学习和逻辑运算符
dcj3sjt126com
c
/*
2013年3月11日20:37:32
地点:北京潘家园
功能:完成用户格式化输入多个值
目的:学习scanf函数的使用
*/
# include <stdio.h>
int main(void)
{
int i, j, k;
printf("please input three number:\n"); //提示用
- 2015越来越好
dcj3sjt126com
歌曲
越来越好
房子大了电话小了 感觉越来越好
假期多了收入高了 工作越来越好
商品精了价格活了 心情越来越好
天更蓝了水更清了 环境越来越好
活得有奔头人会步步高
想做到你要努力去做到
幸福的笑容天天挂眉梢 越来越好
婆媳和了家庭暖了 生活越来越好
孩子高了懂事多了 学习越来越好
朋友多了心相通了 大家越来越好
道路宽了心气顺了 日子越来越好
活的有精神人就不显
- java.sql.SQLException: Value '0000-00-00' can not be represented as java.sql.Tim
feiteyizu
mysql
数据表中有记录的time字段(属性为timestamp)其值为:“0000-00-00 00:00:00”
程序使用select 语句从中取数据时出现以下异常:
java.sql.SQLException:Value '0000-00-00' can not be represented as java.sql.Date
java.sql.SQLException: Valu
- Ehcache(07)——Ehcache对并发的支持
234390216
并发ehcache锁ReadLockWriteLock
Ehcache对并发的支持
在高并发的情况下,使用Ehcache缓存时,由于并发的读与写,我们读的数据有可能是错误的,我们写的数据也有可能意外的被覆盖。所幸的是Ehcache为我们提供了针对于缓存元素Key的Read(读)、Write(写)锁。当一个线程获取了某一Key的Read锁之后,其它线程获取针对于同
- mysql中blob,text字段的合成索引
jackyrong
mysql
在mysql中,原来有一个叫合成索引的,可以提高blob,text字段的效率性能,
但只能用在精确查询,核心是增加一个列,然后可以用md5进行散列,用散列值查找
则速度快
比如:
create table abc(id varchar(10),context blog,hash_value varchar(40));
insert into abc(1,rep
- 逻辑运算与移位运算
latty
位运算逻辑运算
源码:正数的补码与原码相同例+7 源码:00000111 补码 :00000111 (用8位二进制表示一个数)
负数的补码:
符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。 -7 源码: 10000111 ,其绝对值为00000111 取反加一:11111001 为-7补码
已知一个数的补码,求原码的操作分两种情况:
- 利用XSD 验证XML文件
newerdragon
javaxmlxsd
XSD文件 (XML Schema 语言也称作 XML Schema 定义(XML Schema Definition,XSD)。 具体使用方法和定义请参看:
http://www.w3school.com.cn/schema/index.asp
java自jdk1.5以上新增了SchemaFactory类 可以实现对XSD验证的支持,使用起来也很方便。
以下代码可用在J
- 搭建 CentOS 6 服务器(12) - Samba
rensanning
centos
(1)安装
# yum -y install samba
Installed:
samba.i686 0:3.6.9-169.el6_5
# pdbedit -a rensn
new password:123456
retype new password:123456
……
(2)Home文件夹
# mkdir /etc
- Learn Nodejs 01
toknowme
nodejs
(1)下载nodejs
https://nodejs.org/download/ 选择相应的版本进行下载 (2)安装nodejs 安装的方式比较多,请baidu下
我这边下载的是“node-v0.12.7-linux-x64.tar.gz”这个版本 (1)上传服务器 (2)解压 tar -zxvf node-v0.12.
- jquery控制自动刷新的代码举例
xp9802
jquery
1、html内容部分 复制代码代码示例: <div id='log_reload'>
<select name="id_s" size="1">
<option value='2'>-2s-</option>
<option value='3'>-3s-</option