keras根据层名称来初始化网络
def get_model(input_shape1=[75, 75, 3], input_shape2=[1], weights=None):
bn_model = 0
trainable = True
kernel_regularizer = None
activation = 'relu'
img_input = Input(shape=input_shape1)
angle_input = Input(shape=input_shape2)
x = Conv2D(64, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block1_conv1')(img_input)
x = Conv2D(64, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block1_conv2')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
x = Conv2D(128, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block2_conv1')(x)
x = Conv2D(128, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block2_conv2')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
x = Conv2D(256, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block3_conv1')(x)
x = Conv2D(256, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block3_conv2')(x)
x = Conv2D(256, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block3_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
x = Conv2D(512, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block4_conv1')(x)
x = Conv2D(512, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block4_conv2')(x)
x = Conv2D(512, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block4_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
x = Conv2D(512, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block5_conv1')(x)
x = Conv2D(512, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block5_conv2')(x)
x = Conv2D(512, (3, 3), activation=activation, padding='same',
trainable=trainable, kernel_regularizer=kernel_regularizer,
name='block5_conv3')(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
branch_1 = GlobalMaxPooling2D()(x)
branch_2 = GlobalAveragePooling2D()(x)
branch_3 = BatchNormalization(momentum=bn_model)(angle_input)
x = (Concatenate()([branch_1, branch_2, branch_3]))
x = Dense(1024, activation=activation, kernel_regularizer=kernel_regularizer)(x)
x = Dense(1024, activation=activation, kernel_regularizer=kernel_regularizer)(x)
x = Dropout(0.6)(x)
output = Dense(1, activation='sigmoid')(x)
model = Model([img_input, angle_input], output)
optimizer = Adam(lr=1e-5, beta_1=0.9, beta_2=0.999, epsilon=1e-8, decay=0.0)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
if weights is not None:
model.load_weights(weights, by_name=True)
print 'have prepared the model.'
return model