VGG19和Tensorflow实现图像风格转换

这是一般的图像风格转换,每生成一张图片都要训练一次网络

import tensorflow as tf
import numpy as np
import scipy.io
import scipy.misc
import os
import time
os.chdir('E:\\电子书\\04 图像风格迁移\\04 图像风格迁移')

#定义时间函数
def the_current_time():
    print(time.strftime('%Y-%m-%d%H:%M:%S',time.localtime(int(time.time()))))

#定义全局参数
CONTENT_IMG='cat.jpg'
STYLE_IMG='er.jpg'
OUTPUT_DIR='zijijijij/'
if not os.path.exists(OUTPUT_DIR):   #输出文件夹
    os.mkdir(OUTPUT_DIR)
IMAGE_H=600
IMAGE_W=800
COLOR_C=3
NOISE_RATIO=0.7
BETA=5
ALPHA=100
VGG_MODEL= 'imagenet-vgg-verydeep-19.mat'  #载入模块
MEAN_VALUES = np.array([123.68, 116.779, 103.939]).reshape((1, 1, 1, 3))
#图片归一化

def load_vgg_model(path):
    vgg=scipy.io.loadmat(path)
    vgg_layer=vgg['layers']
    
    def _weights(layer,expected_layer_name):
        W=vgg_layer[0][layer][0][0][2][0][0]
        b=vgg_layer[0][layer][0][0][2][0][1]
        layer_name=vgg_layer[0][layer][0][0][0][0]
        assert layer_name==expected_layer_name
        return W,b
    
    def _conv2d_relu(prev_layer,layer,layer_name):
        W,b=_weights(layer,layer_name)
        W=tf.constant(W)
        b=tf.constant(np.reshape(b,(b.size)))
        return tf.nn.relu(tf.nn.conv2d(prev_layer, \
                filter=W, strides=[1, 1, 1, 1], padding='SAME') + b)
    
    def _avgpool(prev_layer):
		   return tf.nn.avg_pool(prev_layer, ksize=[1, 2, 2, 1], \
                        strides=[1, 2, 2, 1], padding='SAME')
    
    graph={}
    graph['input']    = tf.Variable(np.zeros((1, IMAGE_H, IMAGE_W, COLOR_C)), dtype='float32')
    graph['conv1_1']  = _conv2d_relu(graph['input'], 0, 'conv1_1')
    graph['conv1_2']  = _conv2d_relu(graph['conv1_1'], 2, 'conv1_2')
    graph['avgpool1'] = _avgpool(graph['conv1_2'])
    graph['conv2_1']  = _conv2d_relu(graph['avgpool1'], 5, 'conv2_1')
    graph['conv2_2']  = _conv2d_relu(graph['conv2_1'], 7, 'conv2_2')
    graph['avgpool2'] = _avgpool(graph['conv2_2'])
    graph['conv3_1']  = _conv2d_relu(graph['avgpool2'], 10, 'conv3_1')
    graph['conv3_2']  = _conv2d_relu(graph['conv3_1'], 12, 'conv3_2')
    graph['conv3_3']  = _conv2d_relu(graph['conv3_2'], 14, 'conv3_3')
    graph['conv3_4']  = _conv2d_relu(graph['conv3_3'], 16, 'conv3_4')
    graph['avgpool3'] = _avgpool(graph['conv3_4'])
    graph['conv4_1']  = _conv2d_relu(graph['avgpool3'], 19, 'conv4_1')
    graph['conv4_2']  = _conv2d_relu(graph['conv4_1'], 21, 'conv4_2')
    graph['conv4_3']  = _conv2d_relu(graph['conv4_2'], 23, 'conv4_3')
    graph['conv4_4']  = _conv2d_relu(graph['conv4_3'], 25, 'conv4_4')
    graph['avgpool4'] = _avgpool(graph['conv4_4'])
    graph['conv5_1']  = _conv2d_relu(graph['avgpool4'], 28, 'conv5_1')
    graph['conv5_2']  = _conv2d_relu(graph['conv5_1'], 30, 'conv5_2')
    graph['conv5_3']  = _conv2d_relu(graph['conv5_2'], 32, 'conv5_3')
    graph['conv5_4']  = _conv2d_relu(graph['conv5_3'], 34, 'conv5_4')
    graph['avgpool5'] = _avgpool(graph['conv5_4'])
    return graph

def load_image(path):#加载图片
    image=scipy.misc.imread(path)
    image=scipy.misc.imresize(image,(IMAGE_H,IMAGE_W))#更改大小
    image=np.reshape(image,((1,)+image.shape))
    image=image-MEAN_VALUES
    return image

def save_image(path,image):#保存图片
    image=image+MEAN_VALUES
    image=image[0]
    image=np.clip(image,0,225).astype('uint8')
    scipy.misc.imsave(path,image)
    
def content_loss_func(sess,model):
    def _content_loss(p,x):
        N=p.shape[3]   #通道数
        M=p.shape[1]*p.shape[2]  #长和宽乘积
        return (1/(4*M*N))*tf.reduce_sum(tf.pow(x-p,2))
    return _content_loss(sess.run(model['conv4_2']),model['conv4_2'])

STYLE_LAYERS=[('conv1_1',0.5),('conv2_1',1.0),('conv3_1',1.5),('conv4_1',3.0),('conv5_1',4.0)]
def style_loss_func(sess,model):
    def _gram_matrix(F,N,M):
        Ft=tf.reshape(F,(M,N))
        return tf.matmul(tf.transpose(Ft),Ft)#內积
    def _style_loss(a,x):
        N=a.shape[3]
        M=a.shape[1]*a.shape[2]
        A=_gram_matrix(a,N,M)
        B=_gram_matrix(x,N,M)
        return (1/(4*N**2*M**2))*tf.reduce_sum(tf.pow(B-A,2))
    return sum([_style_loss(sess.run(model[layer_name]), model[layer_name]) * w \
                for layer_name, w in STYLE_LAYERS])

def generate_noise_image(content_image,noise_ratio=NOISE_RATIO):
    noise_image=np.random.uniform(-20,20,(1,IMAGE_H,IMAGE_W,COLOR_C)).astype('float32')
    #生成的噪音图像
    input_image=noise_image*noise_ratio+(1-noise_ratio)*content_image
    return input_image

the_current_time()
    
with tf.Session() as sess:
    content_image=load_image(CONTENT_IMG)   #载入内容图片,进行处理
    style_image=load_image(STYLE_IMG)       #载入风格图片
    model=load_vgg_model(VGG_MODEL)         #载入模型
    
    input_image=generate_noise_image(content_image)#生成噪音图片
    sess.run(tf.global_variables_initializer()) #全局变量初始化
    
    sess.run(model['input'].assign(content_image))
    content_loss=content_loss_func(sess,model)
    
    sess.run(model['input'].assign(style_image))
    style_loss=style_loss_func(sess,model)
    
    total_loss=BETA*content_loss+ALPHA*style_loss
    
    optimizer=tf.train.AdamOptimizer(2.0)
    train=optimizer.minimize(total_loss)
    
    sess.run(tf.global_variables_initializer())
    sess.run(model['input'].assign(input_image))
    
    ITERATIONS = 20
    for i in range(ITERATIONS):
        sess.run(train)
        if i%2==0:
            output_image=sess.run(model['input'])
            the_current_time()
            print('Iteration %d' % i)
            print('Cost: ', sess.run(total_loss))
            save_image(os.path.join(OUTPUT_DIR, 'output_%d.jpg' % i), output_image)

 

你可能感兴趣的:(深度学习)