starGAN代码分析

#参数设置
import sys sys.path.append("/home/hxj/anaconda3/lib/python3.6/site-packages") from torchvision.datasets import ImageFolder from PIL import Image import torch import os import random c_dim=5 # dimension of domain labels (1st dataset) c2_dim=8 # dimension of domain labels (2nd dataset) celeba_crop_size=178 # crop size for the CelebA dataset rafd_crop_size=256 #crop size for the RaFD dataset image_size=128 #image resolution g_conv_dim=64 # number of conv filters in the first layer of G d_conv_dim=64 # number of conv filters in the first layer of D g_repeat_num = 6 #number of residual blocks in G d_repeat_num=6 #number of strided conv layers in D lambda_cls=1 #weight for domain classification loss lambda_rec=10 # weight for reconstruction loss lambda_gp=10 #'weight for gradient penalty # Training configuration. dataset='CelebA' # choices=['CelebA', 'RaFD', 'Both']) batch_size=16 # 'mini-batch size num_iters=200000 #number of total iterations for training D num_iters_decay=100000 #number of iterations for decaying lr g_lr=0.0001 #learning rate for G d_lr=0.0001 #learning rate for D n_critic=5 #number of D updates per each G update beta1=0.5 #beta1 for Adam optimizer beta2=0.999 #beta2 for Adam optimizer resume_iters=None #resume training from this step selected_attrs=['Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Male', 'Young'] #selected attributes for the CelebA dataset' # Test configuration. test_iters=200000 #test model from this step # Miscellaneous. num_workers=1 mode='test' # choices=['train', 'test']) use_tensorboard=True # Directories. celeba_image_dir='../data/CelebA_nocrop/images/' if mode == 'train' else '../test/test/' attr_path='../data/list_attr_celeba.txt' if mode == 'train' else '../test/test_celeba.txt' rafd_image_dir='../data/RaFD/train/' log_dir='../test/logs' model_save_dir='../stargan/models' sample_dir='../test/samples' result_dir='../test/result' # Step size. log_step=10 sample_step=1000 model_save_step=10000 lr_update_step=1000

 

import tensorflow as tf
#这是加载TensorBord
class Logger(object):
    """Tensorboard logger."""

    def __init__(self, log_dir):
        """Initialize summary writer."""
        self.writer = tf.summary.FileWriter(log_dir)

    def scalar_summary(self, tag, value, step):
        """Add scalar summary."""
        summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)])
        self.writer.add_summary(summary, step)

#预处理和加载数据

from torch.utils import data
from torchvision import transforms as T

class CelebA(data.Dataset):
    """Dataset class for the CelebA dataset."""

    def __init__(self, image_dir, attr_path, selected_attrs, transform, mode):
        """Initialize and preprocess the CelebA dataset."""
        self.image_dir = image_dir
        self.attr_path = attr_path
        self.selected_attrs = selected_attrs
        self.transform = transform
        self.mode = mode
        self.train_dataset = []
        self.test_dataset = []
        self.attr2idx = {}
        self.idx2attr = {}
        self.preprocess()
        
        if mode == 'train':
            self.num_images = len(self.train_dataset)
        else:
            self.num_images = len(self.test_dataset)
        """
        train_dataset的数据格式如下
         '000003.jpg', [True, False, False, False, True]],
        """
       
    def preprocess(self):
        """Preprocess the CelebA attribute file."""
        lines = [line.rstrip() for line in open(self.attr_path, 'r')]
        all_attr_names = lines[1].split()

        for i, attr_name in enumerate(all_attr_names):
            self.attr2idx[attr_name] = i
            self.idx2attr[i] = attr_name
       
        lines = lines[2:]
        random.seed(1234)
        random.shuffle(lines)
        for i, line in enumerate(lines):
            split = line.split()
            filename = split[0]
            values = split[1:]

            label = []
            for attr_name in self.selected_attrs:
                idx = self.attr2idx[attr_name]
                label.append(values[idx] == '1')

            if (i+1) < 2000:
                self.test_dataset.append([filename, label])
            else:
                self.train_dataset.append([filename, label])

        print('Finished preprocessing the CelebA dataset...')

        #该方法是继承torch里面的utils文件夹里面data文件夹里面的Dataset类
    def __getitem__(self, index):
        """Return one image and its corresponding attribute label."""
        dataset = self.train_dataset if self.mode == 'train' else self.test_dataset
        filename, label = dataset[index]
        image = Image.open(os.path.join(self.image_dir, filename))
        return self.transform(image), torch.FloatTensor(label)

    def __len__(self):
        """Return the number of images."""
        return self.num_images


def get_loader(image_dir, attr_path, selected_attrs, crop_size=178, image_size=128, 
               batch_size=16, dataset='CelebA', mode='train', num_workers=1):
    """Build and return a data loader."""
    transform = []
    if mode == 'train':
        transform.append(T.RandomHorizontalFlip())
    transform.append(T.CenterCrop(crop_size))
    #to run only once
    transform.append(T.Resize(image_size))
    transform.append(T.ToTensor())
    transform.append(T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))
    transform = T.Compose(transform)

    if dataset == 'CelebA':
        #dataset 是CelebA的一个对象
        dataset = CelebA(image_dir, attr_path, selected_attrs, transform, mode)
        
        #加载自己私有数据,从folder.py里面进行加载,但是报错
    elif dataset == 'RaFD':
        dataset = ImageFolder(image_dir, transform)
        
        #DataLoader类中dataset参数必须是 data.Dataset 类
    data_loader = data.DataLoader(dataset=dataset,
                                  batch_size=batch_size,
                                  shuffle=(mode=='train'),
                                  num_workers=num_workers)
    return data_loader

#celeba_loader 相当于是 data_loader,而data_loader 是 torch.utils.data.dataloader.DataLoader的返回值
#其中 里面封装的dataset是CelebA 这个类的对象
celeba_loader = get_loader(celeba_image_dir, attr_path, selected_attrs,celeba_crop_size, image_size, 
                           batch_size,'CelebA', mode, num_workers)

网络模型结构

import torch.nn as nn
import torch.nn.functional as F
import numpy as np

class ResidualBlock(nn.Module):
    """Residual Block with instance normalization."""
    def __init__(self, dim_in, dim_out):
        super(ResidualBlock, self).__init__()
        self.main = nn.Sequential(
            nn.Conv2d(dim_in, dim_out, kernel_size=3, stride=1, padding=1, bias=False),
            nn.InstanceNorm2d(dim_out, affine=True, track_running_stats=True),
            nn.ReLU(inplace=True),
            nn.Conv2d(dim_out, dim_out, kernel_size=3, stride=1, padding=1, bias=False),
            nn.InstanceNorm2d(dim_out, affine=True, track_running_stats=True))

    def forward(self, x):
        return x + self.main(x)


class Generator(nn.Module):
    """Generator network."""
    def __init__(self, conv_dim=64, c_dim=5, repeat_num=6):
        super(Generator, self).__init__()

        layers = []
        # 第一个卷积层,输入为图像和label的串联,3表示图像为3通道,c_dim为label的维度,
        layers.append(nn.Conv2d(3+c_dim, conv_dim, kernel_size=7, stride=1, padding=3, bias=False))
        layers.append(nn.InstanceNorm2d(conv_dim, affine=True, track_running_stats=True))
        layers.append(nn.ReLU(inplace=True))

        # Down-sampling layers.
        curr_dim = conv_dim #这时候的64个维度
        for i in range(2):
            layers.append(nn.Conv2d(curr_dim, curr_dim*2, kernel_size=4, stride=2, padding=1, bias=False))
            layers.append(nn.InstanceNorm2d(curr_dim*2, affine=True, track_running_stats=True))
            layers.append(nn.ReLU(inplace=True))
            curr_dim = curr_dim * 2
            
        #经过两次循环,这时 curr_dim 的维度为256
        # Bottleneck layers.
        for i in range(repeat_num):
            layers.append(ResidualBlock(dim_in=curr_dim, dim_out=curr_dim))
        
        # Up-sampling layers.
        for i in range(2):
            layers.append(nn.ConvTranspose2d(curr_dim, curr_dim//2, kernel_size=4, stride=2, padding=1, bias=False))
            layers.append(nn.InstanceNorm2d(curr_dim//2, affine=True, track_running_stats=True))
            layers.append(nn.ReLU(inplace=True))
            curr_dim = curr_dim // 2
            
        #最后的维度为3维
        layers.append(nn.Conv2d(curr_dim, 3, kernel_size=7, stride=1, padding=3, bias=False))
        layers.append(nn.Tanh())
        self.main = nn.Sequential(*layers)

    def forward(self, x, c): #定义计算的过程
        # Replicate spatially and concatenate domain information.
        c = c.view(c.size(0), c.size(1), 1, 1) #view 相当于Numpy中的reshape
        c = c.repeat(1, 1, x.size(2), x.size(3)) #沿着指定的维度重复tensor
        x = torch.cat([x, c], dim=1) #将输入图像x,label向量c,串联
        return self.main(x)


class Discriminator(nn.Module):
    """Discriminator network with PatchGAN."""
    def __init__(self, image_size=128, conv_dim=64, c_dim=5, repeat_num=6):
        super(Discriminator, self).__init__()
        layers = []
        layers.append(nn.Conv2d(3, conv_dim, kernel_size=4, stride=2, padding=1))
        layers.append(nn.LeakyReLU(0.01))

        curr_dim = conv_dim
        for i in range(1, repeat_num):
            layers.append(nn.Conv2d(curr_dim, curr_dim*2, kernel_size=4, stride=2, padding=1))
            layers.append(nn.LeakyReLU(0.01))
            curr_dim = curr_dim * 2

        kernel_size = int(image_size / np.power(2, repeat_num))
        self.main = nn.Sequential(*layers) #将层加入到神经网络
        self.conv1 = nn.Conv2d(curr_dim, 1, kernel_size=3, stride=1, padding=1, bias=False)#D判读图像的真假
        self.conv2 = nn.Conv2d(curr_dim, c_dim, kernel_size=kernel_size, bias=False)#判别输入图像的label.
        
    def forward(self, x):
        h = self.main(x)     #这里的X表示训练时的图像,经过main()后生成2048维数据
        out_src = self.conv1(h) #out_src 表示图像的真假
        out_cls = self.conv2(h) # out_cls 表示图像的标签
        return out_src, out_cls.view(out_cls.size(0), out_cls.size(1))

solver

from torchvision.utils import save_image
import time
import datetime

class Solver(object):
    """Solver for training and testing StarGAN."""

    def __init__(self, celeba_loader, rafd_loader):
        """Initialize configurations."""

        # Data loader.
        self.celeba_loader = celeba_loader
        self.rafd_loader = rafd_loader

        # Model configurations.
        self.c_dim = c_dim
        self.c2_dim = c2_dim
        self.image_size = image_size
        self.g_conv_dim = g_conv_dim
        self.d_conv_dim = d_conv_dim
        self.g_repeat_num = g_repeat_num
        self.d_repeat_num = d_repeat_num
        self.lambda_cls = lambda_cls
        self.lambda_rec = lambda_rec
        self.lambda_gp = lambda_gp

        # Training configurations.
        self.dataset = dataset
        self.batch_size = batch_size
        self.num_iters = num_iters
        self.num_iters_decay = num_iters_decay
        self.g_lr = g_lr
        self.d_lr = d_lr
        self.n_critic = n_critic
        self.beta1 = beta1
        self.beta2 = beta2
        self.resume_iters = resume_iters
        self.selected_attrs = selected_attrs

        # Test configurations.
        self.test_iters = test_iters

        # Miscellaneous.
        self.use_tensorboard = use_tensorboard
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        #self.device = torch.device('cpu')
        
        # Directories.
        self.log_dir = log_dir
        self.sample_dir = sample_dir
        self.model_save_dir = model_save_dir
        self.result_dir = result_dir

        # Step size.
        self.log_step = log_step
        self.sample_step = sample_step
        self.model_save_step = model_save_step
        self.lr_update_step = lr_update_step

        # Build the model and tensorboard.
        self.build_model()
        if self.use_tensorboard:
            self.build_tensorboard()
    
    def build_model(self):
        """Create a generator and a discriminator."""
        if self.dataset in ['CelebA', 'RaFD']:
            self.G = Generator(self.g_conv_dim, self.c_dim, self.g_repeat_num)
            self.D = Discriminator(self.image_size, self.d_conv_dim, self.c_dim, self.d_repeat_num) 
        elif self.dataset in ['Both']:
            self.G = Generator(self.g_conv_dim, self.c_dim+self.c2_dim+2, self.g_repeat_num)   # 2 for mask vector.
            self.D = Discriminator(self.image_size, self.d_conv_dim, self.c_dim+self.c2_dim, self.d_repeat_num)

        self.g_optimizer = torch.optim.Adam(self.G.parameters(), self.g_lr, [self.beta1, self.beta2])
        self.d_optimizer = torch.optim.Adam(self.D.parameters(), self.d_lr, [self.beta1, self.beta2])
        
        #打印网络结构
        #self.print_network(self.G, 'G')
        #self.print_network(self.D, 'D')
            
        self.G.to(self.device)
        self.D.to(self.device)

    def print_network(self, model, name):
        """Print out the network information."""
        num_params = 0
        for p in model.parameters():
            num_params += p.numel()
        print(model)
        print(name)
        print("The number of parameters: {}".format(num_params))
        
    def create_labels(self, c_org, c_dim=5, dataset='CelebA', selected_attrs=None):
        """Generate target domain labels for debugging and testing."""
        # Get hair color indices.
        if dataset == 'CelebA':
            hair_color_indices = []
            for i, attr_name in enumerate(selected_attrs):
                if attr_name in ['Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Gray_Hair']:
                    hair_color_indices.append(i)
                    # hair_color_indices [0 ,1 ,2]
        c_trg_list = []
        for i in range(c_dim):
            if dataset == 'CelebA':
                c_trg = c_org.clone()
                if i in hair_color_indices:  # Set one hair color to 1 and the rest to 0.
                    c_trg[:, i] = 1
                    for j in hair_color_indices:
                        if j != i:
                            c_trg[:, j] = 0
                else:
                    c_trg[:, i] = (c_trg[:, i] == 0)  # Reverse attribute value.
            elif dataset == 'RaFD':
                c_trg = self.label2onehot(torch.ones(c_org.size(0))*i, c_dim)

            c_trg_list.append(c_trg.to(self.device))
        return c_trg_list
    
    def denorm(self, x):
        """Convert the range from [-1, 1] to [0, 1]."""
        out = (x + 1) / 2
        return out.clamp_(0, 1)
    

    def build_tensorboard(self):
        self.logger = Logger(self.log_dir)

    def restore_model(self, resume_iters):
        """Restore the trained generator and discriminator."""
        print('Loading the trained models from step {}...'.format(resume_iters))
        G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(resume_iters))
        D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(resume_iters))
        self.G.load_state_dict(torch.load(G_path, map_location=lambda storage, loc: storage))
        self.D.load_state_dict(torch.load(D_path, map_location=lambda storage, loc: storage))
        
    def update_lr(self, g_lr, d_lr):
        """Decay learning rates of the generator and discriminator."""
        for param_group in self.g_optimizer.param_groups:
            param_group['lr'] = g_lr
        for param_group in self.d_optimizer.param_groups:
            param_group['lr'] = d_lr

    def reset_grad(self):
        """Reset the gradient buffers."""
        self.g_optimizer.zero_grad()
        self.d_optimizer.zero_grad()
        
    def classification_loss(self, logit, target, dataset='CelebA'):
        """Compute binary or softmax cross entropy loss."""
        if dataset == 'CelebA':
            return F.binary_cross_entropy_with_logits(logit, target, size_average=False) / logit.size(0)
        elif dataset == 'RaFD':
            return F.cross_entropy(logit, target)
        
    def gradient_penalty(self, y, x):
        """Compute gradient penalty: (L2_norm(dy/dx) - 1)**2."""
        weight = torch.ones(y.size()).to(self.device)
        dydx = torch.autograd.grad(outputs=y,
                                   inputs=x,
                                   grad_outputs=weight,
                                   retain_graph=True,
                                   create_graph=True,
                                   only_inputs=True)[0]

        dydx = dydx.view(dydx.size(0), -1)
        dydx_l2norm = torch.sqrt(torch.sum(dydx**2, dim=1))
        return torch.mean((dydx_l2norm-1)**2)

    def label2onehot(self, labels, dim):
        """Convert label indices to one-hot vectors."""
        batch_size = labels.size(0)
        out = torch.zeros(batch_size, dim)
        out[np.arange(batch_size), labels.long()] = 1
        return out

        
    def train(self):
        """Train StarGAN within a single dataset."""
        # Set data loader.
        if self.dataset == 'CelebA':
            data_loader = self.celeba_loader
        elif self.dataset == 'RaFD':
            data_loader = self.rafd_loader

        # Fetch fixed inputs for debugging.
        data_iter = iter(data_loader)
        x_fixed, c_org = next(data_iter)
        # x_fixed表示图像像素值  c_org表示真实标签值  tensor([[ 1.,  0.,  0.,  1.,  1.]])

        x_fixed = x_fixed.to(self.device)
        c_fixed_list = self.create_labels(c_org, self.c_dim, self.dataset, self.selected_attrs)
        #print(c_fixed_list)
        #[tensor([[ 1.,  0.,  0.,  1.,  1.]]), tensor([[ 0.,  1.,  0.,  1.,  1.]]), tensor([[ 0.,  0.,  1.,  1.,  1.]]),
        # tensor([[ 1.,  0.,  0.,  0.,  1.]]), tensor([[ 1.,  0.,  0.,  1.,  0.]])]
        # Learning rate cache for decaying.
        g_lr = self.g_lr
        d_lr = self.d_lr

        # Start training from scratch or resume training.
        start_iters = 0  
        if self.resume_iters: #参数resume_iters 设置为none 
            start_iters = self.resume_iters #可以不连续训练,从之前训练好后的结果处开始
            self.restore_model(self.resume_iters)
        
        # Start training.
        print('Start training...')
        start_time = time.time()
        for i in range(start_iters, self.num_iters):

            # =================================================================================== #
            #                             1. Preprocess input data                                #
            # =================================================================================== #

            # Fetch real images and labels.
            try:
                x_real, label_org = next(data_iter)
            except:
                data_iter = iter(data_loader)
                x_real, label_org = next(data_iter)
           
            # Generate target domain labels randomly.
            rand_idx = torch.randperm(label_org.size(0)) #tensor([ 0])
            label_trg = label_org[rand_idx] #tensor([[ 1.,  0.,  0.,  1.,  1.]]) 真实label,从数据中取出
            if self.dataset == 'CelebA':
                c_org = label_org.clone()
                c_trg = label_trg.clone()
            elif self.dataset == 'RaFD':
                c_org = self.label2onehot(label_org, self.c_dim)
                c_trg = self.label2onehot(label_trg, self.c_dim)

            x_real = x_real.to(self.device)           # Input images.
            c_org = c_org.to(self.device)             # Original domain labels.
            #print(c_org) tensor([[ 1.,  0.,  0.,  1.,  1.]]
            c_trg = c_trg.to(self.device)             # Target domain labels.
            #print(c_trg) tensor([[ 1.,  0.,  0.,  1.,  1.]]
            label_org = label_org.to(self.device)     # Labels for computing classification loss.
            label_trg = label_trg.to(self.device)     # Labels for computing classification loss.

            # =================================================================================== #
            #                             2. Train the discriminator                              #
            # =================================================================================== #

            # Compute loss with real images.
            out_src, out_cls = self.D(x_real)
            """ 
            out_src
            tensor(1.00000e-03 *
               [[[[-1.8202,  0.3373],
                  [-0.5725,  0.4968]]]])
            out_cls
            tensor(1.00000e-03 *
               [[ 0.3915,  2.0016,  0.4509, -2.0520,  2.4382]])
            """
            d_loss_real = - torch.mean(out_src) # d_loss_real最小,那么 out_src 最大==1 (针对图像)
            # d_loss_real = tensor(1.00000e-04 * 3.8965)
            d_loss_cls = self.classification_loss(out_cls, label_org, self.dataset) #针对标签 
            # d_loss_cls = tensor(3.4666)
            # Compute loss with fake images.
            #将真实图像输入x_real和假的标签c_trg输入生成网络,得到生成图像x_fake,
            
            x_fake = self.G(x_real, c_trg) #x_fake 生成一个图像数据

            out_src, out_cls = self.D(x_fake.detach())
            """
            out_src
            tensor(1.00000e-03 *
               [[[[-1.5289,  0.8110],
              [ 0.2153,  0.4624]]]])
            out_cls
            tensor(1.00000e-03 *
               [[ 1.4681,  1.9497,  1.2743, -1.1915,  0.7609]])
            """
            d_loss_fake = torch.mean(out_src) #假图像为0 
            #tensor(1.00000e-05 *-1.0045)

            # Compute loss for gradient penalty.
            #计算梯度惩罚因子alpha,根据alpha结合x_real,x_fake,输入判别网络,计算梯度,得到梯度损失函数,
            alpha = torch.rand(x_real.size(0), 1, 1, 1).to(self.device) 
            # alpha是一个随机数 tensor([[[[ 0.7610]]]])
            x_hat = (alpha * x_real.data + (1 - alpha) * x_fake.data).requires_grad_(True)
            # x_hat是一个图像大小的张量数据,随着alpha的改变而变化
            out_src, _ = self.D(x_hat) #x_hat 表示梯度惩罚因子
            d_loss_gp = self.gradient_penalty(out_src, x_hat)
            #最终d_loss_gp 在0.9954~ 0.9956 波动
            
            # Backward and optimize.
            #损失包含4项:
            # 1.真实图像判定为真
            # 2.真实图像+错误标签记过G网络生成的图像判定为假
            # 3.真实图像经过D网络的生成的标签与真实标签之间的差异损失
            # 4.真实图像和 真实图像+错误标签记过G网络生成的图像 融合的梯度惩罚因子
            d_loss = d_loss_real + d_loss_fake + self.lambda_cls * d_loss_cls + self.lambda_gp * d_loss_gp
            self.reset_grad()
            d_loss.backward()
            self.d_optimizer.step()

            # Logging.
            loss = {}
            loss['D/loss_real'] = d_loss_real.item()
            loss['D/loss_fake'] = d_loss_fake.item()
            loss['D/loss_cls'] = d_loss_cls.item()
            loss['D/loss_gp'] = d_loss_gp.item()
            
            # =================================================================================== #
            #                               3. Train the generator                                #
            # =================================================================================== #
            #生成网络的作用是,输入original域的图可以生成目标域的图像,输入为目标域的图像,生成original域的图像(重建)
            if (i+1) % self.n_critic == 0:
                # Original-to-target domain.
                #将真实图像输入x_real和假的标签c_trg输入生成网络,得到生成图像x_fake
                x_fake = self.G(x_real, c_trg)
                print("c_trg:",c_trg)
                out_src, out_cls = self.D(x_fake)
                g_loss_fake = - torch.mean(out_src) #这里是对抗损失,希望生成的假图像为1
                g_loss_cls = self.classification_loss(out_cls, label_trg, self.dataset)#向目标标签进行转化

                # Target-to-original domain.
                x_reconst = self.G(x_fake, c_org)
                print("c_org:",c_org)
                sys.exit(0)
                g_loss_rec = torch.mean(torch.abs(x_real - x_reconst))

                # Backward and optimize.
                g_loss = g_loss_fake + self.lambda_rec * g_loss_rec + self.lambda_cls * g_loss_cls
                self.reset_grad()
                g_loss.backward()
                self.g_optimizer.step()

                # Logging.
                loss['G/loss_fake'] = g_loss_fake.item()
                loss['G/loss_rec'] = g_loss_rec.item()
                loss['G/loss_cls'] = g_loss_cls.item()

            # =================================================================================== #
            #                                 4. Miscellaneous                                    #
            # =================================================================================== #

            # Print out training information.
            if (i+1) % self.log_step == 0:
                et = time.time() - start_time
                et = str(datetime.timedelta(seconds=et))[:-7]
                log = "Elapsed [{}], Iteration [{}/{}]".format(et, i+1, self.num_iters)
                for tag, value in loss.items():
                    log += ", {}: {:.4f}".format(tag, value)
                print(log)

                if self.use_tensorboard:
                    for tag, value in loss.items():
                        self.logger.scalar_summary(tag, value, i+1)

            # Translate fixed images for debugging.
            if (i+1) % self.sample_step == 0:
                with torch.no_grad():
                    x_fake_list = [x_fixed]
                    for c_fixed in c_fixed_list:
                        x_fake_list.append(self.G(x_fixed, c_fixed))
                    x_concat = torch.cat(x_fake_list, dim=3)
                    sample_path = os.path.join(self.sample_dir, '{}-images.jpg'.format(i+1))
                    save_image(self.denorm(x_concat.data.cpu()), sample_path, nrow=1, padding=0)
                    print('Saved real and fake images into {}...'.format(sample_path))

            # Save model checkpoints.
            if (i+1) % self.model_save_step == 0:
                G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(i+1))
                D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(i+1))
                torch.save(self.G.state_dict(), G_path)
                torch.save(self.D.state_dict(), D_path)
                print('Saved model checkpoints into {}...'.format(self.model_save_dir))

            # Decay learning rates.
            if (i+1) % self.lr_update_step == 0 and (i+1) > (self.num_iters - self.num_iters_decay):
                g_lr -= (self.g_lr / float(self.num_iters_decay))
                d_lr -= (self.d_lr / float(self.num_iters_decay))
                self.update_lr(g_lr, d_lr)
                print ('Decayed learning rates, g_lr: {}, d_lr: {}.'.format(g_lr, d_lr))

    def test(self):
        """Translate images using StarGAN trained on a single dataset."""
        # Load the trained generator.
        self.restore_model(test_iters)
        
        # Set data loader.
        if self.dataset == 'CelebA':
            data_loader = celeba_loader
            
        elif self.dataset == 'RaFD':
            data_loader = rafd_loader
        
        with torch.no_grad():
            for i, (x_real, c_org) in enumerate(data_loader):
                # Prepare input images and target domain labels.
                x_real = x_real.to(self.device)
                c_trg_list = self.create_labels(c_org, self.c_dim, self.dataset, self.selected_attrs)
            
                # Translate images.
                x_fake_list = [x_real]
                   
                for c_trg in c_trg_list:
                    x_fake_list.append(self.G(x_real, c_trg))
              
                # Save the translated images.
                x_concat = torch.cat(x_fake_list, dim=3)
                result_path = os.path.join(self.result_dir, '{}-images.jpg'.format(i+1))
                save_image(self.denorm(x_concat.data.cpu()), result_path, nrow=1, padding=0)
                print('Saved real and fake images into {}...'.format(result_path))

开始训练

rafd_loader = None
solver = Solver(celeba_loader, rafd_loader)
solver.train()

 

转载于:https://www.cnblogs.com/hxjbc/p/9361168.html

你可能感兴趣的:(starGAN代码分析)