算法设计与分析——分苹果问题(运筹学)

今天是算法设计与分析这门课程的第一次课,比想象中的有趣。一上来老师就给我们出了几个算法题,毕竟大一在ACM呆过,题目看着甚是眼熟,至于解法差不多都忘了。老师给我们讲解了一下,感觉颇有意思。看题:

算法设计与分析——分苹果问题(运筹学)_第1张图片

我非常确定以前在学校OJ上做过这种题目。。

老师说把问题具体化,让m=2,甲乙两人分苹果。那么,为了保证甲能赢,甲在倒数第二次拿完苹果后应该要剩下3个苹果(至关重要)。那么甲倒数第三次拿完呢,要剩6个:这时乙如果拿1个,为了保证甲拿完之后剩3个,那么这时甲应该拿2个;乙如果拿了2个,甲应该拿1个。这时已经出现规律了,就是保证在甲拿完之后,剩下的苹果数要满足n % 3 == 0

问题的解也就出来了,在甲拿完之后n满足n % (m + 1) == 0,为了保证甲有苹果可拿,所以n最终要满足n % (m + 1) != 0,否则就相当于立场互换了,乙处在甲的立场,即拿完后苹果满足n % (m + 1) == 0,乙是必赢的。

经过这么一分析,问题确实变得简单而有趣了。看leetcode上一道题:

292. Nim Game

You are playing the following Nim Game with your friend: There is a heap of stones on the table, each time one of you take turns to remove 1 to 3 stones. The one who removes the last stone will be the winner. You will take the first turn to remove the stones.

Both of you are very clever and have optimal strategies for the game. Write a function to determine whether you can win the game given the number of stones in the heap.

Example:

Input: 4
Output: false 

一样的问题,哈哈,两行代码的事儿~

class Solution {
public:
    bool canWinNim(int n) {
        if(n % 4 != 0) return true;
        return false;
    }
};

 

你可能感兴趣的:(算法设计与分析)