在构建社交IM和朋友圈应用时,一个基本的需求是将用户发送的消息和朋友圈更新及时准确的更新给该用户的好友。为了做到这一点,通常需要为用户发送的每一条消息或者朋友圈更新设置一个序号或者ID,并且保证递增,通过这一机制来确保所有的消息能够按照完整并且以正确的顺序被接收端处理。当消息总量或者消息发送的并发数很大的时候,我们通常选择NoSQL存储产品来存储消息,但常见的NoSQL产品都没有提供自增列的功能,因此通常要借助外部组件来实现消息序号和ID的递增,使得整体的架构更加复杂,也影响了整条链路的延时。
表格存储新推出的 主键列递增 功能可以有效地处理上述场景的需求。具体做法为在创建表时,声明主键中的某一列为自增列,在写入一行新数据的时候,应用无需为自增列填入真实值,只需填入一个占位符,表格存储系统在接收到这一行数据后会自动为自增列生成一个值,并且保证在相同的分区键范围内,后生成的值比先生成的值大.
主键列自增功能具有以下几个特性:
介绍了表格存储的主键列自增功能后,下面通过具体的场景介绍下如何使用。
我们继续文章开头的例子,通过构建一个IM聊天工具,演示主键列自增功能的作用和使用方法。
我们要做的IM聊天软件需要支持下列功能:
使用扩散写而非扩散读,主要是由于以下两点原因:
存储系统,我们选择了阿里云的 表格存储 ,主要是因为下列原因:
确定的表格存储的表结构如下:
主键顺序 | 主键名称 | 主键值 | 说明 |
---|---|---|---|
1 | partition_key | md5(receive_id)前4位 | 分区键,保证数据均匀分布 |
2 | receive_id | receive_id | 接收方的用户ID |
3 | message_id | message_id | 消息ID |
到此,我们已经设计出了一个完整的聊天系统,虽然这个系统已经可以运行,且能处理大并发,性能也不差,但是还是存在一些挑战。
针对上述两个问题,问题2可以通过增加机器的方式解决,但是问题1没法通过增加机器解决,增加机器只能缓解问题,却没法彻底解决。那有没有办法可以彻底解决掉上述两个问题?
上面两个问题的复杂度主要是由于需要消息严格递增引起的,如果使用了表格存储的主键列自增功能,那么上层的应用层就会简单的多。
使用了表格存储主键列自增功能后的新架构如下:
有了上面的架构图后,现在可以开始实现了,这里选用JAVA SDK,目前4.2.0版本已经支持主键列自增功能,4.2.0版本Java SDK文档和下载地址。
按照之前的设计,表结构如下:
主键顺序 | 主键名称 | 主键值 | 说明 |
---|---|---|---|
1 | partition_key | hash(receive_id)前4位 | 分区键,保证数据均匀分布,可以使用md5作为hash函数 |
2 | receive_id | receive_id | 接收方的用户ID |
3 | message_id | message_id | 消息ID |
第三列PK是message_id,这一列是主键自增列,建表时指定message_id列的属性为AUTO_INCREMENT,且类型为INTEGER。
private static void createTable(SyncClient client) {
TableMeta tableMeta = new TableMeta(“message_table”);
// 第一列为分区建
tableMeta.addPrimaryKeyColumn(new PrimaryKeySchema("partition_key", PrimaryKeyType.STRING));
// 第二列为接收方ID
tableMeta.addPrimaryKeyColumn(new PrimaryKeySchema("receive_id", PrimaryKeyType.STRING));
// 第三列为消息ID,自动自增列,类型为INTEGER,属性为PKO_AUTO_INCREMENT
tableMeta.addPrimaryKeyColumn(new PrimaryKeySchema("message_id", PrimaryKeyType.INTEGER, PrimaryKeyOption.AUTO_INCREMENT));
int timeToLive = -1; // 永不过期,也可以设置数据有效期,过期了会自动删除
int maxVersions = 1; // 只保存一个版本,目前支持多版本
TableOptions tableOptions = new TableOptions(timeToLive, maxVersions);
CreateTableRequest request = new CreateTableRequest(tableMeta, tableOptions);
client.createTable(request);
}
通过上述方式就创建了一个第三列PK为自动自增的表。
写数据目前支持PutRow和BatchWriteRow两种方式,这两种接口都支持主键列自增功能,写数据时,第三列message_id是主键自增列,这一列不需要填值,只需要填入占位符即可。
private static void putRow(SyncClient client, String receive_id) {
// 构造主键
PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
// 第一列的值为 hash(receive_id)前4位
primaryKeyBuilder.addPrimaryKeyColumn(“partition_key”, PrimaryKeyValue.fromString(hash(receive_id).substring(4)));
// 第二列的值为接收方ID
primaryKeyBuilder.addPrimaryKeyColumn(“receive_id”, PrimaryKeyValue.fromString(receive_id));
// 第三列是消息ID,主键递增列,这个值是TableStore产生的,用户在这里不需要填入真实值,只需要一个占位符:AUTO_INCREMENT 即可。
primaryKeyBuilder.addPrimaryKeyColumn("message_id", PrimaryKeyValue.AUTO_INCREMENT);
PrimaryKey primaryKey = primaryKeyBuilder.build();
RowPutChange rowPutChange = new RowPutChange("message_table", primaryKey);
// 这里设置返回类型为RT_PK,意思是在返回结果中包含PK列的值。如果不设置ReturnType,默认不返回。
rowPutChange.setReturnType(ReturnType.RT_PK);
//加入属性列,消息内容
rowPutChange.addColumn(new Column("content", ColumnValue.fromString(content)));
//写数据到TableStore
PutRowResponse response = client.putRow(new PutRowRequest(rowPutChange));
// 打印出返回的PK列
Row returnRow = response.getRow();
if (returnRow != null) {
System.out.println("PrimaryKey:" + returnRow.getPrimaryKey().toString());
}
// 打印出消耗的CU
CapacityUnit cu = response.getConsumedCapacity().getCapacityUnit();
System.out.println("Read CapacityUnit:" + cu.getReadCapacityUnit());
System.out.println("Write CapacityUnit:" + cu.getWriteCapacityUnit());
}
读消息的时候,需要通过GetRange接口读取最近的消息,message_id这一列PK的起始位置是上一条消息的message_id+1, 结束位置是INF_MAX,这样每次都可以读出最新的消息,然后发送给客户端
private static void getRange(SyncClient client, String receive_id, String lastMessageId) {
RangeRowQueryCriteria rangeRowQueryCriteria = new RangeRowQueryCriteria(“message_table”);
// 设置起始主键
PrimaryKeyBuilder primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
// 第一列的值为 hash(receive_id)前4位
primaryKeyBuilder.addPrimaryKeyColumn(“partition_key”, PrimaryKeyValue.fromString(hash(receive_id).substring(4)));
// 第二列的值为接收方ID
primaryKeyBuilder.addPrimaryKeyColumn(“receive_id”, PrimaryKeyValue.fromString(receive_id));
// 第三列的值为消息ID,起始于上一条消息
primaryKeyBuilder.addPrimaryKeyColumn(“message_id”, PrimaryKeyValue.fromLong(lastMessageId + 1));
rangeRowQueryCriteria.setInclusiveStartPrimaryKey(primaryKeyBuilder.build());
// 设置结束主键
primaryKeyBuilder = PrimaryKeyBuilder.createPrimaryKeyBuilder();
// 第一列的值为 hash(receive_id)前4位
primaryKeyBuilder.addPrimaryKeyColumn(“partition_key”, PrimaryKeyValue.fromString(hash(receive_id).substring(4)));
// 第二列的值为接收方ID
primaryKeyBuilder.addPrimaryKeyColumn(“receive_id”, PrimaryKeyValue.fromString(receive_id));
// 第三列的值为消息ID
primaryKeyBuilder.addPrimaryKeyColumn("message_id", PrimaryKeyValue.INF_MAX);
rangeRowQueryCriteria.setExclusiveEndPrimaryKey(primaryKeyBuilder.build());
rangeRowQueryCriteria.setMaxVersions(1);
System.out.println("GetRange的结果为:");
while (true) {
GetRangeResponse getRangeResponse = client.getRange(new GetRangeRequest(rangeRowQueryCriteria));
for (Row row : getRangeResponse.getRows()) {
System.out.println(row);
}
// 若nextStartPrimaryKey不为null, 则继续读取.
if (getRangeResponse.getNextStartPrimaryKey() != null) {
rangeRowQueryCriteria.setInclusiveStartPrimaryKey(getRangeResponse.getNextStartPrimaryKey());
} else {
break;
}
}
}
上面演示了表格存储及其主键列自增功能在聊天系统中的应用,在其他场景中也有很大的价值,期待大家一起去探索。
也欢迎大家加入表格存储技术交流钉钉群讨论:
其他文章推荐:
如何高效存储GPS数据
使用MaxCompute访问TableStore(OTS) 简明手册