目录
一、继承结构与层次关系
二、类的属性
三、构造方法
四、主要方法
get()方法
set()方法
add()方法
remove()方法
removeRange(int fromIndex, int toIndex)
removeAll(Collection c) 和retainAll(Collection c)
indexOf()和lastIndexOf()方法
clear()方法
五、总结
ArrayList继承结构和层次关系,UML图如下:
public class ArrayList extends AbstractList
implements List, RandomAccess, Cloneable, java.io.Serializable
// 序列化id
private static final long serialVersionUID = 8683452581122892189L;
/**
* Default initial capacity. 默认的初始化容量
*/
private static final int DEFAULT_CAPACITY = 10;
/**
* Shared empty array instance used for empty instances.
* 指定该ArrayList容量为0时,返回该空数组。
*/
private static final Object[] EMPTY_ELEMENTDATA = {};
/**
* Shared empty array instance used for default sized empty instances. We
* distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
* first element is added.
* 当调用无参构造方法,返回的是该数组。刚创建一个ArrayList 时,其内数据量为0。
* 它与EMPTY_ELEMENTDATA的区别就是:该数组是默认返回的,而EMPTY_ELEMENTDATA是在用户指定容量为0时返回。
*/
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
/**
* The array buffer into which the elements of the ArrayList are stored.
* The capacity of the ArrayList is the length of this array buffer. Any
* empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
* will be expanded to DEFAULT_CAPACITY when the first element is added.
* 保存添加到ArrayList中的元素。
* ArrayList的容量就是该数组的长度。
* 该值为DEFAULTCAPACITY_EMPTY_ELEMENTDATA 时,当第一次添加元素进入ArrayList中时,数组将扩容值DEFAULT_CAPACITY。
* 被标记为transient,在对象被序列化的时候不会被序列化。
*/
transient Object[] elementData; // non-private to simplify nested class access
/**
* The size of the ArrayList (the number of elements it contains).
* ArrayList的实际大小(数组包含的元素个数/实际数据的数量)默认为0
* @serial
*/
private int size;
/**
* The maximum size of array to allocate.
* Some VMs reserve some header words in an array.
* Attempts to allocate larger arrays may result in
* OutOfMemoryError: Requested array size exceeds VM limit
*/
/**
* 分派给arrays的最大容量
* 为什么要减去8呢?
* 因为某些VM会在数组中保留一些头字,尝试分配这个最大存储容量,可能会导致array容量大于VM的limit,最终导致OutOfMemoryError。
*/
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
//备注:MAX.VALUE为0x7fffffff,转换成十进制就是2147483647,也就是数组的最大长度是2147483639;
ArrayList提供了三种构造方法:
ArrayList(int initialCapacity):构造一个指定容量为capacity的空ArrayList。这是一个带初始容量大小的有参构造函数。
/**
* Constructs an empty list with the specified initial capacity.
* 构造具有指定初始容量的空List
* @param initialCapacity the initial capacity of the list (list的初始化容量)
* @throws IllegalArgumentException if the specified initial capacity is negative
* 如果指定的初始容量为负,抛出异常
*/
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
} else {
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
ArrayList():构造一个初始容量为 10 的空列表。如果我们创建ArrayList对象的时候不传入参数,则使用此无参构造方法创建ArrayList对象。空的Object[]会给默认容量10。但是这里我们并没有看到数组的容量变为10,原因是当进行第一次add的时候,elementData将会变成默认的长度10。
/**
* Constructs an empty list with an initial capacity of ten.
* 构造一个初始容量为10的空列表
*/
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
ArrayList(Collection extends E> c):构造一个包含指定 collection 的元素的列表,这些元素是按照该 collection 的迭代器返回它们的顺序排列的。第二个有参构造方法构造时赋的值是它的父类Collection对象。
/**
* Constructs a list containing the elements of the specified
* collection, in the order they are returned by the collection's
* iterator.
*构造一个包含指定 collection 的元素的列表,这些元素是按照该 collection 的迭代器返回它们的顺序排列的。
* @param c the collection whose elements are to be placed into this list
* 其元素将放置在此列表中的 collection
* @throws NullPointerException if the specified collection is null
* 如果指定的 collection 为 null
*/
public ArrayList(Collection extends E> c) {
elementData = c.toArray();
if ((size = elementData.length) != 0) {
// c.toArray might (incorrectly) not return Object[] (see 6260652)
//每个集合的toarray()的实现方法不一样,所以需要判断一下,如果不是Object[].class类型,那么就需要使用ArrayList中的方法去改造一下。
if (elementData.getClass() != Object[].class)
//copyOf(要复制的数组,要返回的副本的长度,要返回的副本的类)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// replace with empty array.
this.elementData = EMPTY_ELEMENTDATA;
}
}
/**
* Returns the element at the specified position in this list.
* 返回list中指定位置的元素
* @param index index of the element to return 要返回的元素的索引
* @return the element at the specified position in this list
位于list中指定位置的元素
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E get(int index) {
rangeCheck(index);//越界检查
return elementData(index);//返回索引为index的元素
}
/**
* Checks if the given index is in range. If not, throws an appropriate
* runtime exception. This method does *not* check if the index is
* negative: It is always used immediately prior to an array access,
* which throws an ArrayIndexOutOfBoundsException if index is negative.
检查指定索引是否在范围内。如果不在,抛出一个运行时异常。
这个方法不检查索引是否为负数,它总是在数组访问之前立即优先使用,
如果给出的索引index>=size,抛出一个越界异常
*/
private void rangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
/**
* Constructs an IndexOutOfBoundsException detail message.
* Of the many possible refactorings of the error handling code,
* this "outlining" performs best with both server and client VMs.
*/
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
}
// Positional Access Operations 位置访问操作
// 返回索引为index的元素
@SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
}
/**
* Replaces the element at the specified position in this list with
* the specified element.
* 用指定的元素替换列表中指定位置的元素。
* @param index index of the element to replace 要替换的元素的索引
* @param element element to be stored at the specified position 要存储在指定位置的元素
* @return the element previously at the specified position 先前位于指定位置的元素(返回被替换的元素)
* @throws IndexOutOfBoundsException {@inheritDoc} 如果参数指定索引index>=size,抛出一个越界异常
*/
public E set(int index, E element) {
//检查索引是否越界。如果参数指定索引index>=size,抛出一个越界异常
rangeCheck(index);
//记录被替换的元素(旧值)
E oldValue = elementData(index);
//替换元素(新值)
elementData[index] = element;
//返回被替换的元素
return oldValue;
}
add的方法有两个,一个是带一个参数的,一个是带两个参数的。
boolean add(E e)方法
/**
* Appends the specified element to the end of this list.
* 将指定的元素追加到此列表的末尾
* @param e element to be appended to this list 被添加到list的元素
* @return true (as specified by {@link Collection#add})
*/
public boolean add(E e) {
//确认list容量,如果不够,容量加1。注意:只加1,保证资源不被浪费
ensureCapacityInternal(size + 1); // Increments modCount!!
//将元素e放在size的位置上,并且size++
elementData[size++] = e;
return true;
}
//数组容量检查,不够时则进行扩容,只供类内部使用
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
}
private static int calculateCapacity(Object[] elementData, int minCapacity) {
// 若elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA,则取minCapacity为DEFAULT_CAPACITY和参数minCapacity之间的最大值。DEFAULT_CAPACITY在此之前已经定义为默认的初始化容量是10。
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;
}
//数组容量检查,不够时则进行扩容,只供类内部使用
// minCapacity 想要的最小容量
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
//最小容量>数组缓冲区当前长度
if (minCapacity - elementData.length > 0)
grow(minCapacity);//扩容
}
ArrayList能自动扩展大小的关键方法就在下面的grow()方法里:
/**
* Increases the capacity to ensure that it can hold at least the
* number of elements specified by the minimum capacity argument.
*扩容,保证ArrayList至少能存储minCapacity个元素
* 第一次扩容,逻辑为newCapacity = oldCapacity + (oldCapacity >> 1);即在原有的容量基础上增加一半。
第一次扩容后,如果容量还是小于minCapacity,就将容量扩充为minCapacity。
* @param minCapacity the desired minimum capacity
*/
private void grow(int minCapacity) {
// overflow-conscious code
// 获取当前数组的容量
int oldCapacity = elementData.length;
// 扩容。新的容量=当前容量+当前容量/2.即将当前容量增加一半(当前容量增加1.5倍)。
int newCapacity = oldCapacity + (oldCapacity >> 1);
//如果扩容后的容量还是小于想要的最小容量
if (newCapacity - minCapacity < 0)
//将扩容后的容量再次扩容为想要的最小容量
newCapacity = minCapacity;
//elementData就空数组的时候,length=0,那么oldCapacity=0,newCapacity=0,在这里就是真正的初始化elementData的大小了,就是为10.
//如果扩容后的容量大于临界值,则进行大容量分配
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
//新的容量大小已经确定好了,就copy数组,改变容量大小。
//copyof(原数组,新的数组长度)
elementData = Arrays.copyOf(elementData, newCapacity);
}
//进行大容量分配
private static int hugeCapacity(int minCapacity) {
//如果minCapacity<0,抛出异常
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
//如果想要的容量大于MAX_ARRAY_SIZE,则分配Integer.MAX_VALUE,否则分配MAX_ARRAY_SIZE
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
void add(int index, E element)方法,需要先对元素进行移动,然后完成插入操作。
/**
* Inserts the specified element at the specified position in this
* list. Shifts the element currently at that position (if any) and
* any subsequent elements to the right (adds one to their indices).
*将指定元素插入到列表中的指定位置。将当前位于该位置的元素(如果有的话)和随后的任何元素向右移动(将一个元素添加到它们的索引中)。
* @param index index at which the specified element is to be inserted
* 要插入指定元素的索引(即将插入元素的位置)
* @param element element to be inserted 即将插入的元素
* @throws IndexOutOfBoundsException {@inheritDoc} 如果索引超出size
*/
public void add(int index, E element) {
//越界检查
rangeCheckForAdd(index);
//确认list容量,如果不够,容量加1。注意:只加1,保证资源不被浪费
ensureCapacityInternal(size + 1); // Increments modCount!!
// 对数组进行复制处理,目的就是空出index的位置插入element,并将index后的元素位移一个位置
//在插入元素之前,要先将index之后的元素都往后移一位
//arraycopy(原数组,源数组中的起始位置,目标数组,目标数据中的起始位置,要复制的数组元素的数量)
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
//将指定的index位置赋值为element
elementData[index] = element;
//实际容量+1
size++;
}
/**
* A version of rangeCheck used by add and addAll.
*/
private void rangeCheckForAdd(int index) {
if (index > size || index < 0)//插入的位置不能大于size 和小于0,如果是就报越界异常
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
根据索引remove,通过删除指定位置上的元素
/**
* Removes the element at the specified position in this list.
* Shifts any subsequent elements to the left (subtracts one from their
* indices).
*删除list中位置为指定索引index的元素
* 索引之后的元素向左移一位
* @param index the index of the element to be removed 被删除元素的索引
* @return the element that was removed from the list 被删除的元素
* @throws IndexOutOfBoundsException {@inheritDoc} 如果参数指定索引index>=size,抛出一个越界异常
*/
public E remove(int index) {
//检查索引是否越界。如果参数指定索引index>=size,抛出一个越界异常
rangeCheck(index);
//结构性修改次数+1
modCount++;
//记录索引处的元素
E oldValue = elementData(index);
// 删除指定元素后,需要左移的元素个数
int numMoved = size - index - 1;
//如果有需要左移的元素,就移动(移动后,该删除的元素就已经被覆盖了)
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
// size减一,然后将索引为size-1处的元素置为null。为了让GC起作用,必须显式的为最后一个位置赋null值
elementData[--size] = null; // clear to let GC do its work
//返回被删除的元素
return oldValue;
}
根据对象remove
/**
* Removes the first occurrence of the specified element from this list,
* if it is present. If the list does not contain the element, it is
* unchanged. More formally, removes the element with the lowest index
* i such that
* (o==null ? get(i)==null : o.equals(get(i)))
* (if such an element exists). Returns true if this list
* contained the specified element (or equivalently, if this list
* changed as a result of the call).
*从列表中删除指定元素的第一个出现项,
如果它存在的话。如果列表不包含该元素,它将保持不变。更正式地说,删除索引最低的元素...
* @param o element to be removed from this list, if present
* @return true if this list contained the specified element
*/
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
/*
* Private remove method that skips bounds checking and does not
* return the value removed.
私有的remove方法,该方法跳过边界检查,并且不返回已删除的值。
*/
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
//arraycopy(原数组,源数组中的起始位置,目标数组,目标数据中的起始位置,要复制的数组元素的数量)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
}
/**
* Removes from this list all of the elements whose index is between
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
* Shifts any succeeding elements to the left (reduces their index).
* This call shortens the list by {@code (toIndex - fromIndex)} elements.
* (If {@code toIndex==fromIndex}, this operation has no effect.)
* 从该列表中删除索引位于两者之间的所有元素,包含fromIndex,但是不包含toIndex,
* 将任何后续元素向左移动(减少它们的索引)
* 这个调用通过{@code (toIndex - fromIndex)}元素缩短列表。
*(如果{@code toIndex==fromIndex},此操作无效。)
* @throws IndexOutOfBoundsException if {@code fromIndex} or
* {@code toIndex} is out of range
* ({@code fromIndex < 0 ||
* fromIndex >= size() ||
* toIndex > size() ||
* toIndex < fromIndex})
*/
protected void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = size - toIndex;//被删除的索引后面的个数
//arraycopy(原数组,源数组中的起始位置,目标数组,目标数据中的起始位置,要复制的数组元素的数量)
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);
// clear to let GC do its work
int newSize = size - (toIndex-fromIndex);//新数组的长度
for (int i = newSize; i < size; i++) {
elementData[i] = null;
}
size = newSize;
}
public boolean removeAll(Collection> c) {
//删除指定集合中的所有元素
return batchRemove(c, false, 0, size);
}
public boolean retainAll(Collection> c) {
//检测两个集合是否有交集
return batchRemove(c, true, 0, size);
}
boolean batchRemove(Collection> c, boolean complement, final int from, final int end) {
Objects.requireNonNull(c);//非空检查
final Object[] es = elementData;//原集合
int r;
// Optimize for initial run of survivors
for (r = from;; r++) {//from等于0,end等于size
if (r == end)
return false;
//判断集合c中是否包含原集合中的当前元素
if (c.contains(es[r]) != complement)
//如果包含则跳出循环
break;
}
int w = r++;//w等于0
try {
for (Object e; r < end; r++)//r等于1
//判断集合c中是否包含原集合中的当前元素
if (c.contains(e = es[r]) == complement)
//如果包含则直接保存
es[w++] = e;
} catch (Throwable ex) {// 如果 c.contains() 抛出异常
// Preserve behavioral compatibility with AbstractCollection,even if c.contains() throws.
// 复制剩余的元素,将剩下的元素都赋值给原集合
System.arraycopy(es, r, es, w, end - r);
//w为当前集合的length
w += end - r;
throw ex;
} finally {
modCount += end - w;
//这里有两个用途,在removeAll()时,w一直为0,就直接跟clear一样,全是为null。
//retainAll():没有一个交集返回true,有交集但不全交也返回true,而两个集合相等的时候,返回
//false,所以不能根据返回值来确认两个集合是否有交集,而是通过原集合的大小是否发生改变来判断,如果
//原集合中还有元素,则代表有交集,而原集合没有元素了,说明两个集合没有交集。
shiftTailOverGap(es, w, end);
}
return true;
}
public boolean contains(Object o) {
return indexOf(o) >= 0;
}
public int indexOf(Object o) {
return indexOfRange(o, 0, size);
}
int indexOfRange(Object o, int start, int end) {
//一开始start为0,end等于size
Object[] es = elementData;
if (o == null) {
for (int i = start; i < end; i++) {
if (es[i] == null) {
return i;
}
}
} else {
for (int i = start; i < end; i++) {
if (o.equals(es[i])) {
return i;
}
}
}
return -1;
}
//移除元素的核心操作
private void shiftTailOverGap(Object[] es, int lo, int hi) {
//arraycopy(原数组,源数组中的起始位置,目标数组,目标数据中的起始位置,要复制的数组元素的数量)
System.arraycopy(es, hi, es, lo, size - hi);
for (int to = size, i = (size -= hi - lo); i < to; i++)
es[i] = null;
}
//返回此列表中指定元素的第一个出现项的索引,如果该列表不包含该元素,则返回-1。
public int indexOf(Object o) {
if (o == null) { // 查找的元素为空
for (int i = 0; i < size; i++) // 遍历数组,找到第一个为空的元素,返回下标
if (elementData[i]==null)
return i;
} else { // 查找的元素不为空
for (int i = 0; i < size; i++) // 遍历数组,找到第一个和指定元素相等的元素,返回下标
if (o.equals(elementData[i]))
return i;
}
return -1;
}
//返回此列表中指定元素的最后一次出现的索引,如果该列表不包含该元素,则返回-1。
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
/**
* Removes all of the elements from this list. The list will
* be empty after this call returns.
从列表中删除所有元素。该调用返回后,列表将为空。
*/
public void clear() {
modCount++;
// clear to let GC do its work
for (int i = 0; i < size; i++)
elementData[i] = null;
size = 0;
}
1)arrayList可以存放null。
2)arrayList本质上就是一个elementData数组。
3)arrayList区别于数组的地方在于能够自动扩展大小,其中关键的方法就是gorw()方法。
4)arrayList中removeAll(collection c)和clear()的区别就是removeAll可以删除批量指定的元素,而clear是全是删除集合中的元素。
5)arrayList由于本质是数组,所以它在数据的查询方面会很快,而在插入删除这些方面,性能下降很多,有移动很多数据才能达到应有的效果。
6)arrayList实现了RandomAccess,所以在遍历它的时候推荐使用for循环。