- 如何进行项目风险评估
项目管理
进行项目风险评估的核心在于全面识别风险、定量评估、动态监控。其中,全面识别风险要求团队在项目启动前和实施过程中,从各个角度搜集和整理可能影响项目进度、成本、质量及目标达成的各种内外部风险;定量评估则依托数据与模型,将风险发生的概率与影响程度进行量化,从而为后续制定应对策略提供科学依据;动态监控强调在项目全过程中持续跟踪风险变化,并及时调整风险应对措施,确保项目始终处于可控状态。一、项目风险评估的基
- 互信息详解
Shockang
机器学习数学通关指南机器学习人工智能数学信息论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》ima知识库知识库广场搜索:知识库创建人机器学习@Shockang机器学习数学基础@Shockang深度学习@Shockang正文互信息:变量间关联性的量化利器互信息(MutualInformation)是信息论中的核心概念,也是
- DeepSeek发展背景和前景
爱吃苹果的日记本
人工智能
1.成立背景:它的背景是由杭州深度求索人工智能基础技术研究有限公司开发,该公司成立于2023年7月17日,由量化资管巨头幻方量化创立。幻方量化在AI量化对冲基金领域具有深厚的技术积累和资金支持,这为DeepSeek的研发奠定了坚实的基础。2.技术演进:2024年1月:发布首个大模型DeepSeekLLM,包含670亿参数,在2万亿token的数据集上训练,性能超越Llama270BBase。202
- 8.3 GPTQ量化技术:4倍压缩大模型显存,精度零损失!
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力语言模型人工智能gpt
GPTQ量化技术:4倍压缩大模型显存,精度零损失!8.2GPTQ:专为GPT设计的模型量化算法一、模型量化技术背景在讨论GPTQ之前,我们需要先理解大模型部署面临的显存困境。以LLaMA-7B模型为例:FP32精度显存占用:28GBFP16精度显存占用:14GBINT8量化后显存占用:7GBINT4量化后显存占用:3.5GB
- N卡 英伟达Nvidia 显卡及其计算能力(Compute Capability)表
Panesle
显卡Nvidiagpu算力英伟达
N卡英伟达Nvidia显卡及其计算能力(ComputeCapability)表某些库或软件对显卡算力有要求,可参考下表核对。比如:AWQ量化模型不支持算力小于7.5的显卡V100:ValueError:ThequantizationmethodawqisnotsupportedforthecurrentGPU.Minimumcapability:75.Currentcapability:70.
- 28.代码随想录算法训练营第二十八天|122. 买卖股票的最佳时机 II,55. 跳跃游戏,45. 跳跃游戏 II,1005. K 次取反后最大化的数组和
白鹭鸣鸣!
算法java
28.代码随想录算法训练营第二十八天|122.买卖股票的最佳时机II,55.跳跃游戏,45.跳跃游戏II,1005.K次取反后最大化的数组和122.买卖股票的最佳时机II-力扣(LeetCode)给你一个整数数组prices,其中prices[i]表示某支股票第i天的价格。在每一天,你可以决定是否购买和/或出售股票。你在任何时候最多只能持有一股股票。你也可以先购买,然后在同一天出售。返回你能获得的
- llama.cpp 安装与量化(mac电脑)
初七i
llamamacosllama.cpp量化ai
llama.cpp安装与量化(mac电脑)1.创建并切换至虚拟环境2.安装llama.cpp3.安装依赖4.转换模型5.创建build目录6.生成构建文件7.编译项目8.运行量化命令9.测试量化后的模型1.创建并切换至虚拟环境condacreate-nllamacpppython=3.10-ycondaactivatellamacpp2.安装llama.cppgitclonehttps://git
- SSE Server-Send Events适用于什么场景,有什么弊端存在
Jerome_GHW
信息与通信
Server-SentEvents(SSE)是一种用于在客户端和服务器之间实现单向实时通信的Web技术。它主要适用于需要从服务器向客户端推送实时信息的场景,例如新闻更新、股票价格变动、社交媒体通知等。SSE的优点:实时性:SSE提供了从服务器到客户端的单向实时通信,允许服务器在事件发生时向客户端推送数据。简单易用:SSE使用简单,只需使用EventSource对象在客户端监听即可。SSE的弊端:单
- 【时间序列聚类】从数据中发现隐藏的模式
T-I-M
机器学习人工智能时间序列
在大数据时代,时间序列数据无处不在。无论是股票市场的价格波动、天气的变化趋势,还是用户的点击行为,这些数据都随着时间推移而产生。然而,面对海量的时间序列数据,我们如何从中提取有价值的信息?答案之一就是时间序列聚类。本文将以通俗易懂的方式,带你了解时间序列聚类的基本概念、应用场景以及实现思路,并希望能为你提供一些启发。什么是时间序列聚类?简单来说,时间序列聚类是一种将相似的时间序列归为一类的技术。它
- Manus AI:国产AI Agent的破局与隐忧
Hello kele
人工智能人工智能程序员经验分享AI编程
2025年3月,国内AI领域突然杀出一匹黑马——ManusAI。这个自称全球首个通用AIAgent的产品,凭借"自主完成复杂任务"的核心能力,在技术圈掀起了不小的波澜。官网演示中,它能自动筛选简历、生成房产分析报告、甚至编写股票研究PPT,被网友戏称为"数字世界的私人助理"。但随着内测的展开,关于它的争议也开始浮出水面。一、技术突围背后的故事Manus的开发团队Monica.im颇为低调。创始人肖
- 如何通过API用Python获取北向资金流向数据?
量化问财
量化软件QMT量化交易Python量化炒股PTradeQMT量化交易量化软件deepseek
推荐阅读:《【最全攻略】免费的量化软件有哪些?券商的交易接口怎么获取?》如何通过API用Python获取北向资金流向数据?北向资金指的是通过沪港通和深港通渠道,从香港市场流入A股市场的资金。对于投资者来说,了解北向资金流向对于把握市场趋势和投资决策具有重要意义。本文将介绍如何通过API用Python获取北向资金流向数据。理解北向资金流向数据北向资金流向数据主要包括以下几个方面:资金流入量:指通过沪
- 固定表头、首列 —— uniapp、vue 项目
菲力蒲LY
vue.jsuni-app前端
项目实地:也可以在【微信小程序】搜索体验:xny.handbook另一个体验项目:官网一、效果展示二、代码展示(1)html部分股票代码建议投金额实际投金额建议股数实际股数◎原单价涨出-单价↑跌出+单价↓+○预赚+●实赚-○预赔-●实赔操作{{item.stockCode}}{{item.calculAdvsIvsMoney}}{{item.calculRealIvsMoney}}{{item.t
- 【高级RAG技巧】使用二阶段检索器平衡检索的效率和精度
深度学习机器
大语言模型深度学习入门人工智能语言模型
一传统方法之前的文章已经介绍过向量数据库在RAG(RetrievalAugmentedGenerative)中的应用,本文将会讨论另一个重要的工具-Embedding模型。一般来说,构建生产环境下的RAG系统是直接使用Embedding模型对用户输入的Query进行向量化表示,并且从已经构建好的向量数据库中检索出相关的段落用户大模型生成。但是这种方法很明显会受到Embedding模型性能的影响,比
- 使用Java对接StockTV印度股票数据源API实战指南
java爬虫
关键词:JavaAPI开发、SpringBoot、WebSocket、ApacheHttpClient一、项目概述本指南将使用Java实现StockTV金融数据API的完整对接方案,包含以下核心模块:✅RESTAPI客户端:支持同步/异步调用✅WebSocket实时订阅:基于SpringWebSocket✅企业级特性:连接池管理、熔断降级✅生产就绪:完整的异常处理和监控二、环境准备1.技术栈要求J
- 基于llama_cpp 调用本地模型(llama)实现基本推理
月光技术杂谈
大模型初探llamallama.cpppythonLLM集成显卡本地模型AI
零基础实践本地推理模型基本应用:基于llama_cpp的本地模型调用。本文先安装llama_cpppython库,再编写程序,利用其调用llama-2-7b-chat.Q4_K_M.ggu模型。背景llama_cpp是一个基于C++的高性能库(llama.cpp)的Python绑定,支持在CPU或GPU上高效运行LLaMA及其衍生模型(如LLaMA2),并通过量化技术(如GGUF格式)优化内存使用
- 使用 ResponseBodyEmitter 实现异步响应式数据流处理
随风九天
springjava多线程BodyEmitter异步响应
1.概述1.1什么是ResponseBodyEmitterResponseBodyEmitter是SpringMVC提供的一个接口,用于支持异步返回响应数据流。它允许在控制器方法中逐步发送数据给客户端,而无需一次性生成完整的响应。1.2使用场景实时数据推送(如股票行情、聊天消息等)。大量数据分批传输。服务器发送事件(SSE,Server-SentEvents)。1.3优势与局限性优势:支持异步数据
- 【贪心算法2】
m0_46150269
贪心算法算法
力扣122.买卖股票最佳时机Ⅱ链接:link思路要求最大利润,可以分解成子问题求解,在最低价格买入,最高价格卖出。假如第0天价格最低,第3天价格最高,利润=prices[3]-pricnes[0],可以将利润公式拆解成(prices[3]-prices[2])+(prices[2]-prices[1])+(prices[1]-prices[0])最终变成了求相邻两天的利润,所以可以得到一个关于利润
- llama.cpp框架下GGUF格式及量化参数全解析
Black_Rock_br
人工智能
前言:在人工智能领域,语言模型的高效部署和推理一直是研究热点。随着模型规模的不断扩大,如何在有限的硬件资源上实现快速、高效的推理,成为了一个关键问题。`llama.cpp`框架以其出色的性能和灵活性,为这一问题提供了有效的解决方案。其中,GGUF格式和模型量化参数是实现高效推理的重要技术手段。本文将对`llama.cpp`框架下的GGUF格式及量化参数进行详细解析,帮助读者更好地理解和应用这些技术
- DeepSeek的发展背景与前景分析
盐都不盐
ai科技人工智能软件需求
DeepSeek(深度求索)作为中国人工智能领域的代表性企业,凭借其技术创新与战略布局,在短时间内迅速崛起,并在全球AI领域引发广泛关注。以下从发展背景与前景两个维度进行综合分析:一、发展背景1.创始团队与资源基础-DeepSeek成立于2023年7月,由量化投资公司幻方量化联合创始人梁文锋创立,核心团队汇聚了北大、清华等顶尖高校的博士及年轻人才,团队规模仅约140人,但效率极高。-幻方量化为其提
- 文本向量化-词嵌入方法系列1:静态词嵌入(Word2Vec+GloVe)
学习ml的小菜鸡
nlp自然语言处理word2vec
文本分散化表示指将语言表示成低维、稠密、连续的向量,分为静态嵌入和动态嵌入两种方式。静态词嵌入有Word2Vec,Sen2Vec,Doc2Vec,以及GloVe模型;而动态词嵌入有ELMO,Transformer,GPT,Bert和XLNet等等。本文主要对静态词嵌入方法做一个整体介绍,动态词嵌入会在系列2中更新。目录1.Word2Vec1.1CBOW1.2Skip-gram1.3Sen2Vec+
- 中小型企业如何选择合适的设备巡检系统?
无代码开发平台二维码
近年来,随着企业数字化转型的深入,中国企业对无代码平台的接受度显著提升,尤其在设备管理领域,二维码巡检系统因其低成本、易部署的特点迅速普及。据统计,类似草料二维码这样的轻量化平台已吸引数十万用户,覆盖制造、物业、消防等多个行业。中小企业往往设备数量有限、管理资源不足,传统的手工记录不仅效率低,还容易出错。而只需给设备贴上二维码,通过手机扫码就能完成巡检记录、拍照留证和数据汇总,显然是性价比极高的解
- 【大模型】DeepSeek-R1-Distill-Qwen部署及API调用
油泼辣子多加
大模型实战算法gptlangchain人工智能
DeepSeek-R1-Distill-Qwen是由中国人工智能公司深度求索(DeepSeek)开发的轻量化大语言模型,基于阿里巴巴的Qwen系列模型通过知识蒸馏技术优化而来。当前模型开源后,我们可以将其部署,使用API方式进行本地调用1.部署环境本文中的部署基础环境如下所示:PyTorch2.5.1Python3.12(ubuntu22.04)Cuda12.4GPURTX3090(24GB)*1
- PyBroker:利用 Python 和机器学习助力算法交易
skywalk8163
人工智能编程语言量化分析python机器学习算法
PyBroker:利用Python和机器学习助力算法交易你是否希望借助Python和机器学习的力量来优化你的交易策略?那么你需要了解一下PyBroker!这个Python框架专为开发算法交易策略而设计,尤其关注使用机器学习的策略。借助PyBroker,你可以轻松创建和微调交易规则,构建强大的模型,并深入了解你的策略表现。PyBroker介绍官方说明文档:利用PyBroker进行量化投资官方说明文档
- 嵌入式开发必读:RTOS选型指南与实例分析
大模型大数据攻城狮
arm开发嵌入式面试嵌入式面经RTOSFreeRTOSNuttXVxWorks
目录一、实时操作系统(RTOS)概述1.1实时性的核心定义1.2关键技术指标指标详解不同RTOS的指标表现1.3RTOS与通用OS的本质区别实例对比使用通用OS的后果二、RTOS选型的重要性三、RTOS选型的关键因素1.实时性要求实时性要求量化分析2.系统资源3.功能需求4.开发工具和支持和开发效率对比5.商业支持和社区活跃度四、常见的RTOS及其适用场景1.FreeRTOS2.VxWorks3.
- 解锁激光焊接新境界:填丝/填粉自适应技术大揭秘
计算机学长
激光控制激光焊接激光
激光焊接的品质之重在现代制造业的宏大版图中,激光焊接已然成为一股不可或缺的关键力量,深深扎根于众多核心领域。从汽车制造的精密车身架构搭建,到航空航天飞行器的关键部件连接,再到电子设备的微型化精密组装,激光焊接以其独特的技术优势,为这些行业的高效生产和产品性能提升提供了坚实保障。在汽车制造领域,激光焊接能够实现车身零部件的高精度连接,有效提升车身的结构强度与刚性,同时降低车身重量,为汽车的轻量化设计
- 炒股开户资金要求是多少?不同证券公司是否有区别?
股票程序化交易接口
量化交易股票API接口Python股票量化交易炒股开户资金要求证券公司股票量化接口股票API接口
Python股票接口实现查询账户,提交订单,自动交易(1)Python股票程序交易接口查账,提交订单,自动交易(2)股票量化,Python炒股,CSDN交流社区>>>开户资金的组成部分炒股开户的资金要求包含多个方面。首先是用于购买股票的资金,这是最直接的部分。投资者需要有一定资金才能买入股票。其次是可能存在的账户管理费等费用的预留资金。有些证券公司会收取一定的账户管理费用,如果没有预留这部分资金,
- 多宠识别:基于计算机视觉的智能宠物管理系统架构解析
深圳市快瞳科技有限公司
计算机视觉宠物系统架构
一、行业痛点与技术方案演进在多宠家庭场景中,传统方案面临三大技术瓶颈:1.生物特征混淆:同品种/毛色宠物识别准确率低于65%2.动态场景适应:进食/奔跑状态下的误检率达30%+3.数据孤岛问题:离线设备无法实现持续学习优化快瞳科技采用**双模态视觉融合架构**,结合轻量化YOLOv7-Tiny模型与CLIP多模态大模型,实现:-98.7%的跨品种宠物识别准确率(CVPR2024最新测试数据)-单次
- python可應用在金融分析的那一個方面,如何部署在linux server上面。
蠟筆小新工程師
金融
Python在金融分析中應用廣泛,以下是幾個主要方面:###1.**數據處理與分析**-使用**Pandas**和**NumPy**等庫來處理和分析大規模數據集,進行清理、轉換和統計運算。-舉例:處理歷史市場數據,分析價格趨勢、交易量等。###2.**機器學習與預測**-使用**scikit-learn**、**TensorFlow**或**PyTorch**建立模型進行股票價格預測、信用風險評估
- YOLOv7-Tiny:轻量化实时目标检测的革新实践
追寻向上
YOLO目标检测人工智能
一、模型定位与核心优势YOLOv7-Tiny作为YOLOv7系列的轻量级版本,专为边缘计算设备和实时检测场景设计。相比标准YOLOv7,其参数量减少约60%(仅6.02M),计算量降至13.2GFLOPs,在保持较高检测精度的同时,推理速度提升至68FPS(NVIDIAV100)。该模型适用于无人机、嵌入式设备、移动端等资源受限场景,在实时性与精度之间实现了极佳平衡。二、模型架构创新主干网络优化深
- 大模型与图数据库RAG通俗流程拆解
gallonyin
产品笔记AI知识图谱
图构建(略)neo4j、tugraph等均可,不影响GraphRAG核心框架模型向量化模型bce-embedding-base_v1重排序模型bce-reranker-base_v1大语言模型Qwen/Qwen2.5-32B-Instruct图数据库tugraph索引faiss核心流程这个调用链日志展示了一个完整的问答系统处理用户输入“百草园里有什么”的过程。本项目使用和参考了开源项目茴香豆。以下
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,Django@Python2.x 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f