spark-streaming与flume整合

一、以push方式接收flume发送过来的数据(也就是flume客户端主动向spark streaming发送数据)

1、首先配置pom.xml文件,文件内容如下:



    4.0.0

    spark-scala-java-demo
    spark-scala-java-demo
    1.0-SNAPSHOT

    
        
            org.apache.spark
            spark-core_2.11
            2.1.0
        
        
            org.apache.spark
            spark-sql_2.11
            2.1.0
        
        
            org.apache.spark
            spark-hive_2.11
            2.1.0
        
        
            org.apache.spark
            spark-streaming_2.11
            2.1.0
        
        
            org.apache.hadoop
            hadoop-client
            2.6.5
        
        
            org.apache.spark
            spark-streaming-kafka-0-8_2.11
            2.1.0
        
        
            org.apache.spark
            spark-streaming-flume_2.11
            2.1.0
        
        
            mysql
            mysql-connector-java
            8.0.18
        
        
            org.scala-lang
            scala-library
            2.11.12
        
    
    
        src/main/java
        src/test/java
        
            
                org.scala-tools
                maven-scala-plugin
                2.15.2
                
                    
                        
                            compile
                            testCompile
                        
                    
                
            
            
                org.apache.maven.plugins
                maven-assembly-plugin
                3.1.1
                
                    
                        jar-with-dependencies
                    
                
                
                    
                        make-assembly
                        package
                        
                            single
                        
                    
                
            
            
                org.apache.maven.plugins
                maven-surefire-plugin
                2.10
                
                    true
                
            
            
                org.apache.maven.plugins
                maven-compiler-plugin
                
                    1.8
                    1.8
                
            
        
    

其中最主要的是:spark-streaming-flume_2.11和spark-streaming_2.11包

2、以push方式接收flume发送过来的数据(也就是flume客户端主动向spark streaming发送数据),如下代码所示:

package com.best.spark.streaming.java;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.flume.FlumeUtils;
import org.apache.spark.streaming.flume.SparkFlumeEvent;
import org.apache.spark.streaming.kafka.KafkaUtils;
import scala.Tuple2;

import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;

public class FlumePushWordCount {
    public static void main(String[] args){
        /**
         * kafka
         * 创建topic:/usr/local/src/kafka_2.11-2.2.1/bin/kafka-topics.sh --create --zookeeper master:2181 --topic topic_spark_streaming --partitions 5 --replication-factor 3
         *
         *
         * 启动生产者:/usr/local/src/kafka_2.11-2.2.1/bin/kafka-console-producer.sh --broker-list master:9092 --topic topic_spark_streaming
         */
        //创建SparkConf对象,注意在streaming中的setMaster在设置本地模式时,必须加上local[2],数字2是最小值,因为实时计算需要多个线程并行执行,一个
        //一个线程是检测数据是否过来,另一个线程是用于处理数据的
        SparkConf conf=new SparkConf().setAppName("FlumePushWordCount").setMaster("local[2]");
        //创建JavaStreamingContext对象,它在实例化时有两个参数,第一个是SparkConf对象,
        //第二个参数是Durations时间参数,用于每隔多长时间就去收集一次数据,然后划分成一个batch来处理
        SparkSession sparkSession= SparkSession.builder().config(conf).getOrCreate();
        JavaSparkContext sc=JavaSparkContext.fromSparkContext(sparkSession.sparkContext());

        //JavaStreamingContext jssc=new JavaStreamingContext(conf, Durations.seconds(5));
        JavaStreamingContext jssc=new JavaStreamingContext(sc, Durations.seconds(5));

        //此处的IP和端口是作为服务端的,flume是作为客户端
        JavaReceiverInputDStream lines= FlumeUtils.createStream(jssc,"192.168.3.26",8888);
        //在spark core中此处的时JavaRDD,而在Streaming中则是JavaDStream
        JavaDStream words=lines.flatMap(x->{
            //获得从flume中过来的字符串,它是以byte的格式发送过来的
            String line=new String(x.event().getBody().array());
            return Arrays.asList(line.split(" ")).iterator();
        });
        //在spark core中此处的时JavaPairRDD,而在Streaming中则是JavaPairDStream
        JavaPairDStream pair=words.mapToPair(x->{
            return new Tuple2(x,1);
        });
        JavaPairDStream wordcount=pair.reduceByKey((a,b)->a+b);
        //注意在使用spark streaming中必须有action算子,否则无法启动
        wordcount.print();

        /*wordcount.foreachRDD(x->{
           x.foreach(y->{
             System.out.println(y);
           });
        });*/
        try{
            //注意使用jssc.awaitTermination(),必须加上try异常处理
            //只有调用start方法,spark streaming才会启动执行,否则不会被执行
            jssc.start();
            //启动之后就会卡到这,就会一直处理实时数据流
            jssc.awaitTermination();
            //在执行stop之后就不能在使用start启动了,在调用stop后,内部的SparkContext也会同时停止
            //如果不希望停止SparkContext,那么使用jssc.stop(false);即可
            //注意:一个JVM同时只能运行一个StreamingContext,只有StreamingContext停止之后,才能启动另一个StreamingContext
            jssc.stop();
        }catch(InterruptedException e){
            e.printStackTrace();
        }
        jssc.close();
        sc.stop();
        sc.close();
        sparkSession.stop();
        sparkSession.close();
    }
}

3、flume的配置文件为:

#a1表示代理名称
a1.sources = s1
a1.sinks = k1
a1.channels = c1

#配置source
a1.sources.s1.type = spooldir
a1.sources.s1.spoolDir = /usr/local/flume_logs
a1.sources.s1.channels = c1
a1.sources.s1.fileHeader = false
a1.sources.s1.interceptors = i1
a1.sources.s1.interceptors.i1.type = timestamp
#配置channel
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /usr/local/flume_logs_tmp_cp
a1.channels.c1.dataDirs = /usr/local/flume_logs_tmp
#配置sink
a1.sinks.k1.type = avro
a1.sinks.k1.channel = c1
a1.sinks.k1.hostname = 192.168.3.26
a1.sinks.k1.port = 8888

注意:/usr/local/flume_logs目录必须是事先建好的,sinks的type是avro,主机名就是spark-streaming绑定的ip和端口

4、启动spark-streaming ,然后在执行flume,其命令如下:

flume-ng agent -n a1 -c conf -f flume-spark-streaming.properties -Dflume.root.logger=DEBUG,console

5、然后在/usr/local/flume_logs目录创建一个文件,文件内容为:

spark-streaming与flume整合_第1张图片

6、此时spark-streaming就会接收到信息,如下图所示:

spark-streaming与flume整合_第2张图片

7、什么时候我们应该用Spark Streaming整合Kafka去做实时计算?什么使用应该整合flume去做实时计算?这就看你的实时数据流的产出频率了:
(1)如果你的实时数据流产出特别频繁,比如说一秒钟10w条,那就必须是kafka,分布式的消息缓存中间件,可以承受超高并发。
(2)如果你的实时数据流产出频率不固定,比如有的时候是1秒10w,有的时候是1个小时才10w,可以选择将数据用nginx日志来表示,每隔一段时间将日志文件放到flume监控的目录中,然后用spark streaming来计算。

二、以poll方式主动从flume-sink中拉取数据,也就是spark streaming会定时去flume拉取数据(spark-streaming是客户端,flume是服务端)

1、首先将spark-streaming-flume-sink_2.11-2.1.0.jar,scala-library-2.11.12.jar包拷贝到flume目录中的lib目录中去,如果已存在则不需要拷贝,如下图所示:

spark-streaming与flume整合_第3张图片

2、flume配置文件如下所示:

#a1表示代理名称
a1.sources = s1
a1.sinks = k1
a1.channels = c1

#配置source
a1.sources.s1.type = spooldir
a1.sources.s1.spoolDir = /usr/local/flume_logs
a1.sources.s1.channels = c1
a1.sources.s1.fileHeader = false
a1.sources.s1.interceptors = i1
a1.sources.s1.interceptors.i1.type = timestamp
#配置channel
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /usr/local/flume_logs_tmp_cp
a1.channels.c1.dataDirs = /usr/local/flume_logs_tmp
#配置sink
#a1.sinks.k1.type = avro
#a1.sinks.k1.channel = c1
#a1.sinks.k1.hostname = 192.168.3.26
#a1.sinks.k1.port = 8888
a1.sinks.k1.type = org.apache.spark.streaming.flume.sink.SparkSink
a1.sinks.k1.hostname = slave2
a1.sinks.k1.port = 8888
a1.sinks.k1.channel = c1

3、代码如下:

package com.best.spark.streaming.java;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.flume.FlumeUtils;
import org.apache.spark.streaming.flume.SparkFlumeEvent;
import scala.Tuple2;

import java.util.Arrays;

public class FlumePollWordCount {
    public static void main(String[] args){
        /**
         * kafka
         * 创建topic:/usr/local/src/kafka_2.11-2.2.1/bin/kafka-topics.sh --create --zookeeper master:2181 --topic topic_spark_streaming --partitions 5 --replication-factor 3
         *
         *
         * 启动生产者:/usr/local/src/kafka_2.11-2.2.1/bin/kafka-console-producer.sh --broker-list master:9092 --topic topic_spark_streaming
         */
        //创建SparkConf对象,注意在streaming中的setMaster在设置本地模式时,必须加上local[2],数字2是最小值,因为实时计算需要多个线程并行执行,一个
        //一个线程是检测数据是否过来,另一个线程是用于处理数据的
        SparkConf conf=new SparkConf().setAppName("FlumePollWordCount").setMaster("local[2]");
        //创建JavaStreamingContext对象,它在实例化时有两个参数,第一个是SparkConf对象,
        //第二个参数是Durations时间参数,用于每隔多长时间就去收集一次数据,然后划分成一个batch来处理
        SparkSession sparkSession= SparkSession.builder().config(conf).getOrCreate();
        JavaSparkContext sc=JavaSparkContext.fromSparkContext(sparkSession.sparkContext());

        //JavaStreamingContext jssc=new JavaStreamingContext(conf, Durations.seconds(5));
        JavaStreamingContext jssc=new JavaStreamingContext(sc, Durations.seconds(5));

        //此处的IP和端口是作为客户端的,flume是作为服务端
        JavaReceiverInputDStream lines= FlumeUtils.createPollingStream(jssc,"slave2",8888);
        //在spark core中此处的时JavaRDD,而在Streaming中则是JavaDStream
        JavaDStream words=lines.flatMap(x->{
            //获得从flume中过来的字符串,它是以byte的格式发送过来的
            String line=new String(x.event().getBody().array());
            return Arrays.asList(line.split(" ")).iterator();
        });
        //在spark core中此处的时JavaPairRDD,而在Streaming中则是JavaPairDStream
        JavaPairDStream pair=words.mapToPair(x->{
            return new Tuple2(x,1);
        });
        JavaPairDStream wordcount=pair.reduceByKey((a,b)->a+b);
        //注意在使用spark streaming中必须有action算子,否则无法启动
        wordcount.print();

        /*wordcount.foreachRDD(x->{
           x.foreach(y->{
             System.out.println(y);
           });
        });*/
        try{
            //注意使用jssc.awaitTermination(),必须加上try异常处理
            //只有调用start方法,spark streaming才会启动执行,否则不会被执行
            jssc.start();
            //启动之后就会卡到这,就会一直处理实时数据流
            jssc.awaitTermination();
            //在执行stop之后就不能在使用start启动了,在调用stop后,内部的SparkContext也会同时停止
            //如果不希望停止SparkContext,那么使用jssc.stop(false);即可
            //注意:一个JVM同时只能运行一个StreamingContext,只有StreamingContext停止之后,才能启动另一个StreamingContext
            jssc.stop();
        }catch(InterruptedException e){
            e.printStackTrace();
        }
        jssc.close();
        sc.stop();
        sc.close();
        sparkSession.stop();
        sparkSession.close();
    }
}

4、首先启动flume,启动命令为:

flume-ng agent -n a1 -c conf -f flume-spark-streaming_poll.properties -Dflume.root.logger=DEBUG,console

5、然后启动spark-streaming,在/usr/local/flume_logs目录中创建一个文件输入:

hello word
hello you
hello me

6、此时会在spark-steaming中输出,如下图所示:

spark-streaming与flume整合_第4张图片

你可能感兴趣的:(spark-streaming与flume整合)