- 用realsense d435i传感器在实际环境中跑ORB_SLAM3,顺带解决一部分编译问题
睫力上爬
SLAM日常折腾传感器ORB_SLAM3
是的ORB_SLAM3来了,时隔五年,它来带的惊喜到底是啥呢?一个完全依赖于最大后验估计(MAP)的单/双目惯导融合系统高回召的地点识别功能(High-recallplacerecognition)第一个完整的多地图系统(multi-map)一个抽象的相机模型表示论文地址论文细节今天不说,今天主要先拿到代码,并且用自己的传感器试试实际效果编译终端拉代码记得提前安装好OpenCV,Eigen,和Pa
- 【ORB_SLAM系列3】—— 如何在Ubuntu18.04中使用自己的单目摄像头运行ORB_SLAM3(亲测有效,踩坑记录)
啥也不会的研究僧
SLAM算法安装与实践记录ubuntu计算机视觉人工智能自动驾驶
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、ORB_SLAM3源码编译二、ORB_SLAM3实时单目相机测试1.查看摄像头的话题2.运行测试三.运行测试可能的报错1.报错一(1)问题描述(2)原因分析(3)解决2.报错二(1)问题描述(2)解决前言本次教程运行ORB_SLAM3,所需的环境如下:Ubuntu18.04、ros版本:melodicOpencv4.5
- ORB-SLAM3源码的学习:GeometricTools文件
PaLu-LvL
计算机视觉#ORB-SLAM3c++计算机视觉ubuntu人工智能学习
前言GeometricTools提供了两种几何计算功能:1.计算两个关键帧之间的基础矩阵、2.通过三角化算法从两个视角恢复三维点。这部分功能在ORB-SLAM2中就已经介绍过了,这里不过多赘述。1.头文件GeometricTools.h除了计算基础矩阵和三角化恢复三维点外,头文件中还提供了两种用于比较矩阵的模板函数。第一个函数用于比较一个OpenCV矩阵和一个Eigen矩阵,第二个函数用于比较两个
- ORB-SLAM3的源码学习: Settings.cc:Settings::readImageInfo读取图像信息
PaLu-LvL
计算机视觉#ORB-SLAM3计算机视觉opencvubuntuc++人工智能学习
前言简单总结一下:这个函数的主要目的是从配置文件中读取和设置与相机图像尺寸相关的各种参数。它会根据需要调整图像的宽度和高度,并根据这些调整更新相机的校准参数。如果是立体相机或带IMU的相机,还会同时更新第二个相机的校准参数。最终,这些调整确保图像和相机校准信息的一致性。1.函数声明voidSettings::readImageInfo(cv::FileStorage&fSettings)2.函数定
- ORB-SLAM2源码学习:System.cc:System::System SLAM系统的构造函数
PaLu-LvL
计算机视觉#ORB-SLAM2c++学习计算机视觉算法opencv
前言ORB-SLAM2源码学习:rgbd_tum.cc源文件-CSDN博客之前我们在具体的实例的代码中初始化了一个SLAM的系统,现在让我们来看看这个SLAM的构造函数具体进行了什么操作。总的来说:该函数主要干了以下事情:1.初始化一些参数(列表初始化)2.加载并检查配置文件和词汇表3.创建一些对象如关键帧数据库、地图、绘制器等。4.启动并初始化多个线程:跟踪线程、本地建图线程、回环检测线程、可视
- ORB-SLAM3的源码学习: Settings.cc:Settings::readCamera1/readCamera2 从配置文件中加载相机参数
PaLu-LvL
计算机视觉#ORB-SLAM3计算机视觉ubuntuopencv人工智能数码相机学习
前言需要从配置文件yaml文件中读取相机参数才能用于后续计算。1.函数声明读取相机1的参数:voidSettings::readCamera1(cv::FileStorage&fSettings)如果是双目相机则还要读取相机2的参数:voidSettings::readCamera2(cv::FileStorage&fSettings)2.函数定义相机11.读取相机模型3的模型加入了针孔相机模型以
- AWS上基于Llama 3模型检测Amazon Redshift里文本数据的语法和语义错误的设计方案
weixin_30777913
数据仓库云计算awsllama
一、技术栈选型核心服务:AmazonRedshift:存储原始文本和检测结果AmazonBedrock:托管Llama370B模型AWSLambda:无服务计算(Python运行时)AmazonS3:中间数据存储AWSStepFunctions:工作流编排辅助工具:psycopg2:RedshiftPython连接器boto3:AWSSDKforPythonPandas:数据批处理JSONSche
- AWS上基于高德API验证Amazon Redshift里国内地址数据正确性的设计方案
weixin_30777913
python数据仓库云计算aws
该方案通过无服务架构实现高可扩展性,结合分页查询和批量更新确保高效处理海量数据,同时通过密钥托管和错误重试机制保障安全性及可靠性。一、技术栈组件技术选型说明计算层AWSLambda无服务器执行,适合事件驱动、按需处理,成本低数据存储AmazonRedshift存储原始地址数据及验证结果API调用高德地理编码API提供地址标准化及验证能力开发语言Python3.9+使用requests处理HTTP请
- 水下 SLAM 定位模组的设计与实现
赵谨言
论文经验分享毕业设计笔记
标题:水下SLAM定位模组的设计与实现内容:1.摘要摘要:本文介绍了水下SLAM定位模组的设计与实现。首先,对水下定位技术的背景和需求进行了分析。然后,详细阐述了模组的设计思路和关键技术,包括传感器选型、数据融合算法等。接着,介绍了模组的实现过程和实验结果,通过实际测试验证了模组的性能和可靠性。最后,对未来的研究方向进行了展望。关键词:水下SLAM;定位模组;传感器;数据融合2.引言2.1.研究背
- ORB-SLAM2源码学习:Tracking.cc:GrabImageStereo、GrabImageRGBD、GrabImageMonocular处理图像
PaLu-LvL
计算机视觉#ORB-SLAM2#局部建图线程计算机视觉人工智能c++ubuntu学习
前言该部分函数在Tracking.cc源文件中定义,用于处理图像。1.函数作用:1.GrabImageStereo函数的主要作用是处理输入的双目图像(左视图和右视图),进行必要的预处理(颜色转换),创建表示当前帧的对象,并执行跟踪操作,最后返回当前帧在世界坐标系下的变换矩阵。cv::MatTracking::GrabImageStereo(constcv::Mat&imRectLeft,const
- Serverless 架构与 AWS Lambda 的应用实践
桂月二二
serverless架构aws
引言随着云计算的普及,传统的服务器管理方式逐渐被更加灵活和高效的技术所取代,Serverless(无服务器)架构便是其中一个备受瞩目的创新。在Serverless架构下,开发者不再需要关注服务器的部署、维护和扩展问题,而是专注于编写业务逻辑。AWSLambda作为亚马逊云服务提供的一项无服务器计算服务,为这一架构的实现提供了强大的支持。本文将深入探讨Serverless架构和AWSLambda的核
- CMake入门
PaLu-LvL
CMakec++计算机视觉ubuntu人工智能学习
前言我们在很多SLAM的源码里都能看到CMake的使用,这个CMake到底是什么呢有什么用呢?一、cmake的简介CMake(CrossplatformMake)是一个开源的跨平台自动化建构系统,用来管理程序构建,不依赖于特定编译器。CMake可以自动化编译源代码、创建库、生成可执行二进制文件等,为开发者节省了大量的时间,可以说是工程实践的必备工具。CMake通过使用简单的配置文件CMakeLis
- 优化ROS包编译流程:处理多工作空间下的路径冲突
YRr YRr
ROSros
ROSNoetic下ORB_SLAM2编译错误分析及解决方案在使用ROSNoetic编译ORB_SLAM2包时,您遇到了如下错误信息:[rosbuild]rospackfoundpackage"ORB_SLAM2"at"/home/lyb/pointcloudmap_ws/src/ORB_SLAM2_modified/Examples/ROS/ORB_SLAM2",butthecurrentdir
- AWS无服务器 应用程序开发—第七章 邮件服务 发布订阅(Amazon SES)
yunquantong
AWS技术awsserverlessSESSNSemail
AmazonSES(SimpleEmailService)AmazonSES是一个高可扩展性、灵活且经济高效的电子邮件发送和接收服务,旨在帮助开发人员和企业通过应用程序发送通知、事务型电子邮件和营销电子邮件。主要功能:发送邮件:支持批量发送电子邮件,适用于营销和大规模通知。接收邮件:通过将接收到的电子邮件存储在AmazonS3、调用AWSLambda函数等方式处理。高可靠性:依托AWS的基础设施,
- 快速上手Serverless架构与FastAPI结合实现自动化移动应用后端
老大白菜
pythonserverless架构fastapi
快速上手Serverless架构与FastAPI结合实现自动化移动应用后端引言随着云计算技术的发展,Serverless架构已经成为构建现代应用的一种流行选择。它允许开发者将更多精力集中在核心业务逻辑上,而无需管理底层基础设施。本文将以AWSLambda和APIGateway为基础,通过FastAPI框架来快速搭建一个移动应用的后端服务。1.Serverless架构概述Serverless架构的核
- Serverless Architecture Boilerplate 使用教程
谢璋声Shirley
ServerlessArchitectureBoilerplate使用教程serverless-architecture-boilerplate:package::zap::rocket:BoilerplatetoorganizeanddeploybigprojectsusingAWSAPIGatewayandAWSLambdawithServerlessFramework项目地址:https:/
- 【SLAM】SLAM技术详解:同步定位与地图构建
steamedobun
计算机视觉SLAM深度学习人工智能目标检测机器学习
引言在机器人技术、自动驾驶、增强现实(AR)和无人机等前沿领域,SLAM(SimultaneousLocalizationandMapping)技术扮演着至关重要的角色。SLAM,即同时定位与地图构建,是一种通过传感器数据实时估计机器人或无人系统自身位置并构建环境地图的技术。本文将详细介绍SLAM技术的原理、应用场景、分类及其优缺点,并对SLAM技术的未来发展进行展望。SLAM技术概述定义与原理S
- 自动驾驶(Automated Driving)系统组成和主要技术--以思维导图形式介绍
大连海事的亲外甥
自动驾驶人工智能机器学习
一、自动驾驶概念介绍自动驾驶是指汽车依靠传感器、高精度地图和复杂的算法等,不需要驾驶员操作而自动完成驾驶的技术。二、自动驾驶系统组成和主要技术架构图思维导图形式绘制1、感知层传感器模块:包括摄像头、激光雷达、毫米波雷达和超声波雷达等,用于获取车辆周围环境的数据,如道路状况、其他车辆、行人和障碍物等。定位传感器模块:包括GNSS(全球导航卫星系统)、INS(惯性导航系统)和视觉SLAM等,用于确定车
- Python软体中在AWS Lambda上部署Python应用:一站式部署指南
清水白石008
pythonPython题库pythonaws开发语言
Python软体中在AWSLambda上部署Python应用:一站式部署指南AWSLambda是亚马逊提供的一个无服务器计算服务,允许开发者在无需管理服务器的情况下运行代码。它自动处理计算资源的配置和扩展,具有高度的可扩展性和灵活性。对于Python开发者来说,AWSLambda为我们提供了一个高效的方式来部署Python应用,尤其是对那些处理事件驱动任务、定时任务或者API服务的应用,Lambd
- SLAM源码分析(八)
wang_yq0728
1024程序员节slam
[email protected],ComputeH21函数,用DLT方法求解单应矩阵H。vP1:参考帧中归一化后的特征点;vP2:当前帧中归一化后的特征点;基本原理:|x'||h1h2h3||x||y'|=a|h4h5h6||y|简写:x'=aHx,a为一个尺度因子1||h7h8h9||1|使用DLT(directlineartranform)求解该模型x'=aHx--->(x
- ORB-SLAM2源码逐行解析系列(二):追踪线程
LDST_CSDN
计算机视觉人工智能自动驾驶
1.Tracking类(1)Tracking类的定义///Examples/Monocular/include/Tracking.hclassTracking{public:/***@brief构造函数**@param[in]pSys系统实例*@param[in]pVoc字典指针*@param[in]pFrameDrawer帧绘制器*@param[in]pMapDrawer地图绘制器*@param
- ORB-SLAM2源码学习:Initializer.cc⑨: Initializer::FindHomography找到最好的单应矩阵H
PaLu-LvL
计算机视觉#ORB-SLAM2#初始化c++计算机视觉opencvubuntu人工智能矩阵学习
前言该函数功能的实现依赖于之前学习的三个函数特征点的坐标归一化、计算单应矩阵H以及它的评分函数。ORB-SLAM2源码学习:Initializer.cc②:Initializer::Normalize坐标归一化-CSDN博客ORB-SLAM2源码学习:Initializer.cc③:Initializer::ComputeH21计算单应矩阵-CSDN博客ORB-SLAM2源码学习:Initiali
- ORB-SLAM2源码学习:Initializer.cc(13): Initializer::ReconstructF用F矩阵恢复R,t及三维点
PaLu-LvL
计算机视觉#ORB-SLAM2#初始化c++计算机视觉人工智能ubuntu学习矩阵线性代数
前言这部分函数的实现依赖于之前学习的的检查三角化结果的函数:ORB-SLAM2源码学习:Initializer.cc⑧:Initializer::CheckRT检验三角化结果-CSDN博客这里通过基础矩阵F来恢复位姿和三维点实际上是借助本质矩阵来进行的,相对于用单应矩阵H恢复位姿和三维点来说,它的解的结构较为简单其解的讨论形式也是比较简单的。1.函数声明boolInitializer::Recon
- ORB-SLAM2源码学习:Initializer.cc(11): Initializer::ReconstructH用H矩阵恢复R, t和三维点
PaLu-LvL
计算机视觉#ORB-SLAM2#初始化c++计算机视觉ubuntu人工智能矩阵学习
前言这个函数的实现依赖于之前学习的检验三角化结果的函数:ORB-SLAM2源码学习:Initializer.cc⑧:Initializer::CheckRT检验三角化结果-CSDN博客位姿可能有多组解,到底哪个才是真正的解呢?方法是实践出真知。根据相应的论文我们分两种情况分别恢复出不同的解,最后得到一个最好的。每种可能的解都需要重复计算一次,最终根据如下条件选择最佳的解:1.最优解成功三角化点数目
- AWS微服务示例项目指南
缪玺彬
AWS微服务示例项目指南aws-microservicesAWSServerlessEvent-drivenMicroserviceswithusingAWSLambda,AWSDynamoDB,AWSAPIGateway,AWSEventBridge,AWSSQS,AWSCDKstandsforCloudDevelopmentKitforIaC—InfrastructureasCodetoola
- 点云从入门到精通技术详解100篇-基于卷积和注意力机制的3D点云特征提取
格图素书
3d
目录知识储备点云获取技术分类一、图像衍生点云二、LiDAR三、RGB-D深度图像传感器基于3D激光slam的点云特征提取为什么要进行点云特征提取特征提取理论与代码编写点云特征提取主体类sample_and_groupfarthest_point_samplequery_ball_pointindex_points前言国内外研究现状卷积神经网络三维卷积神经网络稀疏卷积[21]基于3D点云数据的目标分
- 学习笔记之——3DGS-SLAM系列代码解读
gwpscut
3DGaussianSplatting(3DGS)3DGS深度学习三维重建计算机视觉3d
最近对一系列基于3DGaussianSplatting(3DGS)SLAM的工作的源码进行了测试与解读。为此写下本博客mark一下所有的源码解读以及对应的代码配置与测试记录~其中工作1~5的原理解读见博客:学习笔记之——3DGaussianSplatting及其在SLAM与自动驾驶上的应用调研_3dgaussiansplattingslam-CSDN博客文章浏览阅读5.3k次,点赞53次,收藏92
- 【MotionCap】DROID-SLAM 1 :介绍及安装
等风来不如迎风去
AI入门与实战人工智能SLAHMRDROID-SLAM
DROID-SLAM:DROID-SLAM:DeepVisualSLAMforMonocularDROID-SLAM:适用于单目、立体和RGB-D相机的深度视觉SLAMStereo,andRGB-DCamerashttps://arxiv.org/abs/2108.10869DROID-SLAM:DeepVisualSLAMforMonocular,Stereo,andRGB-DCamerasfi
- VYOS容器运行Uptime Kuma监控
GTaylor
Vyosvyos容器UptimeKuma监控系统无处不容器
添加镜像addcontainerimagelouislam/uptime-kumasudomkdir/config/kumasudochmod777/config/kuma配置setcontainernameUptimeKumadescription'Uptime-Kuma'setcontainernameUptimeKumaimage'docker.io/louislam/uptime-kuma
- 【ORB-SLAM2:九、BA优化】
KeyPan
ORB-SLAM2人工智能计算机视觉机器学习深度学习算法
BA(BundleAdjustment)是SLAM系统中优化位姿和地图点位置的重要技术。通过最小化图结构中的重投影误差,BA在提高地图精度和轨迹优化方面发挥了核心作用。本章将围绕BA优化展开,从图优化工具简介到优化函数分类,再到具体的局部BA和Sim3优化边的解析进行详细阐述。9.1图优化和g2o简介9.1.1图优化的基本概念图优化图优化将SLAM问题建模为一个图结构:节点(Vertices):代
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1