题意: N个顶点的无向图,给你每条边的长度,要你求该图的最小生成树.其中每个点用大写字母A-Z表示.
转换一下输入的格式就好了
链接:poj 1251 && hdu 1301
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define ll long long
using namespace std;
const int maxn = 1000 + 10;
const int maxm = 1000000 + 10;
const int inf = 0x3f3f3f3f;
int fa[maxn];
int rnk[maxn];
int n, m;
struct node {
int a, b, c;
friend bool operator < (node x, node y) {
return x.c < y.c;
}
}q[maxn];
void init() {
for(int i = 0; i <= n; i++) {
fa[i] = i;
rnk[i] = 0;
}
}
int getf(int x) {
if(x != fa[x]) {
fa[x] = getf(fa[x]);
}
return fa[x];
}
void unions(int x, int y) {
x = getf(x);
y = getf(y);
if(x == y) return;
if(rnk[x] < rnk[y]) {
fa[x] = y;
}
else {
fa[y] = x;
if(rnk[x] == rnk[y]) rnk[x]++;
}
}
bool same(int x, int y) {
return getf(x) == getf(y);
}
int kruskal(int n, int m) {
sort(q + 1, q + 1 + m);
int ans = 0;
int nedge = 0;
for(int i = 1; i <= m && nedge != n - 1; i++) {
if(getf(q[i].a) != getf(q[i].b)) {
unions(q[i].a, q[i].b);
ans += q[i].c;
nedge++;
}
}
if(nedge < n - 1) ans = -1;
return ans;
}
int main()
{
int T, kcase = 0;
while(scanf("%d", &n) && n) {
char ch;
int k;
int a;
m = 0;
init();
for(int i = 1; i < n; i++) {
cin >> ch >> k;
char ch1;
while(k--) {
cin >> ch1 >> a;
q[++m].a = ch - 'A' + 1;
q[m].b = ch1 - 'A' + 1;
q[m].c = a;
}
}
int ans = kruskal(n, m);
printf("%d\n", ans);
}
return 0;
}
题意:给出n个节点,再有m条边,这m条边代表从a节点到b节点电缆的长度,现在要你将所有节点都连起来,并且使长度最小
裸题。。。。。。
链接:poj 1287
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define ll long long
using namespace std;
const int maxn = 10000 + 10;
const int maxm = 1000000 + 10;
const int inf = 0x3f3f3f3f;
int fa[maxn];
int rnk[maxn];
int n, m;
struct node {
int a, b;
int c;
friend bool operator < (node x, node y) {
return x.c < y.c;
}
}q[maxn];
void init() {
for(int i = 0; i <= n; i++) {
fa[i] = i;
rnk[i] = 0;
}
}
int getf(int x) {
if(x != fa[x]) {
fa[x] = getf(fa[x]);
}
return fa[x];
}
void unions(int x, int y) {
x = getf(x);
y = getf(y);
if(x == y) return;
if(rnk[x] < rnk[y]) {
fa[x] = y;
}
else {
fa[y] = x;
if(rnk[x] == rnk[y]) rnk[x]++;
}
}
bool same(int x, int y) {
return getf(x) == getf(y);
}
int kruskal(int n, int m) {
init();
sort(q + 1, q + 1 + m);
int ans = 0;
int nedge = 0;
for(int i = 1; i <= m && nedge != n - 1; i++) {
if(getf(q[i].a) != getf(q[i].b)) {
unions(q[i].a, q[i].b);
ans += q[i].c;
nedge++;
}
}
if(nedge < n - 1) ans = -1;
return ans;
}
int main()
{
int T, kcase = 0;
while(scanf("%d", &n) && n) {
scanf("%d", &m);
for(int i = 1; i <= m; i++) {
scanf("%d %d %d", &q[i].a, &q[i].b, &q[i].c);
}
int ans = kruskal(n, m);
printf("%d\n", ans);
}
return 0;
}
题意:首行给出N,接着是个N*N的矩阵,map[i][j]就代表i到j的权值。接着给出Q,下面Q行,每行两个数字A,B,代表A到B已经有边。最后输出最小生成树的权值和就行
有边的设为0即可
链接:poj 2421
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define ll long long
using namespace std;
const int maxn = 10000 + 10;
const int maxm = 1000000 + 10;
const int inf = 0x3f3f3f3f;
int fa[maxn];
int rnk[maxn];
int n, m;
struct node {
int a, b;
int c;
friend bool operator < (node x, node y) {
return x.c < y.c;
}
}q[maxn];
void init() {
for(int i = 0; i <= n; i++) {
fa[i] = i;
rnk[i] = 0;
}
}
int getf(int x) {
if(x != fa[x]) {
fa[x] = getf(fa[x]);
}
return fa[x];
}
void unions(int x, int y) {
x = getf(x);
y = getf(y);
if(x == y) return;
if(rnk[x] < rnk[y]) {
fa[x] = y;
}
else {
fa[y] = x;
if(rnk[x] == rnk[y]) rnk[x]++;
}
}
bool same(int x, int y) {
return getf(x) == getf(y);
}
int kruskal(int n, int m) {
init();
sort(q + 1, q + 1 + m);
int ans = 0;
int nedge = 0;
for(int i = 1; i <= m && nedge != n - 1; i++) {
if(getf(q[i].a) != getf(q[i].b)) {
unions(q[i].a, q[i].b);
ans += q[i].c;
nedge++;
}
}
if(nedge < n - 1) ans = -1;
return ans;
}
int gp[maxn][maxn];
int main()
{
int T, kcase = 0;
while(scanf("%d", &n) != EOF) {
int c;
m = 0;
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
scanf("%d", &gp[i][j]);
}
}
int k;
scanf("%d", &k);
int a, b;
while(k--) {
scanf("%d %d", &a, &b);
//a++, b++;
gp[a][b] = gp[b][a] = 0;
}
for(int i = 1; i <= n; i++) {
for(int j = i + 1; j <= n; j++) {
q[++m].a = i;
q[m].b = j;
q[m].c = gp[i][j];
}
}
int ans = kruskal(n, m);
printf("%d\n", ans);
}
return 0;
}
题意:在一个叫做QS的星系,他们使用一些特殊的通讯方式,两个人之间通讯需要使用一个网络适配器,但是一个网络适配器只能跟一个人联系,所有它连接几个人就需要几个适配器,而且每个人都有一些不同的偏好,喜欢的适配器的牌子也是不同的,现在让你求出来让QS人之间相互通讯最少需要多少代价?
输入第一行是测试数据组数,下面是一个N,代表N个人,下一样有N个数表示每个人喜欢的适配器的价格,接着一个矩阵,表示两点间通讯电缆的价格。
在边权上加上适配器价格即可
链接:zoj 1586
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define ll long long
using namespace std;
const int maxn = 1000 + 10;
const int maxm = 1000000;
const int inf = 0x3f3f3f3f;
int fa[maxn];
int rnk[maxn];
int n, m;
struct node {
int a, b;
int c;
friend bool operator < (node x, node y) {
return x.c < y.c;
}
}q[maxm];
void init() {
for(int i = 0; i <= n; i++) {
fa[i] = i;
rnk[i] = 0;
}
}
int getf(int x) {
if(x != fa[x]) {
fa[x] = getf(fa[x]);
}
return fa[x];
}
void unions(int x, int y) {
x = getf(x);
y = getf(y);
if(x == y) return;
if(rnk[x] < rnk[y]) {
fa[x] = y;
}
else {
fa[y] = x;
if(rnk[x] == rnk[y]) rnk[x]++;
}
}
bool same(int x, int y) {
return getf(x) == getf(y);
}
int kruskal() {
init();
sort(q + 1, q + 1 + m);
int ans = 0;
int nedge = 0;
for(int i = 1; i <= m && nedge != n - 1; i++) {
if(getf(q[i].a) != getf(q[i].b)) {
unions(q[i].a, q[i].b);
ans += q[i].c;
nedge++;
}
}
if(nedge < n - 1) ans = -1;
return ans;
}
int gp[maxn][maxn];
int price[maxn];
int main()
{
int T, kcase = 0;
scanf("%d", &T);
while(T--) {
scanf("%d", &n);
for(int i = 1; i <= n; i++) {
scanf("%d", &price[i]);
}
int c;
m = 0;
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
scanf("%d", &gp[i][j]);
if(j > i) {
q[++m].a = i;
q[m].b = j;
q[m].c = gp[i][j] + price[i] + price[j];
}
}
}
int ans = kruskal();
printf("%d\n", ans);
}
return 0;
}
题意:给出n个长度相同的字符串,一个字符串代表一个点,每两个字符串有多少个字符不同,则不同的个数即为两点之间的距离,要求各个点都连通求quality的最大值
分母越小越好,转化为最小生成树问题
链接:poj 1789
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define ll long long
using namespace std;
const int maxn = 2000 + 10;
const int maxm = 2000000;
const int inf = 0x3f3f3f3f;
int fa[maxn];
int rnk[maxn];
int n, m;
struct node {
int a, b;
int c;
friend bool operator < (node x, node y) {
return x.c < y.c;
}
}q[maxm];
void init() {
for(int i = 0; i <= n; i++) {
fa[i] = i;
rnk[i] = 0;
}
}
int getf(int x) {
if(x != fa[x]) {
fa[x] = getf(fa[x]);
}
return fa[x];
}
void unions(int x, int y) {
x = getf(x);
y = getf(y);
if(x == y) return;
if(rnk[x] < rnk[y]) {
fa[x] = y;
}
else {
fa[y] = x;
if(rnk[x] == rnk[y]) rnk[x]++;
}
}
bool same(int x, int y) {
return getf(x) == getf(y);
}
int kruskal() {
init();
sort(q + 1, q + 1 + m);
int ans = 0;
int nedge = 0;
for(int i = 1; i <= m && nedge != n - 1; i++) {
if(getf(q[i].a) != getf(q[i].b)) {
unions(q[i].a, q[i].b);
ans += q[i].c;
nedge++;
}
}
if(nedge < n - 1) ans = -1;
return ans;
}
int gp[maxn][maxn];
int price[maxn];
char str[maxn][105];
int main()
{
int T, kcase = 0;
while(~scanf("%d", &n) && n) {
m = 0;
for(int i = 1; i <= n; i++) {
scanf("%s", str[i]);
for(int j = 1; j < i; j++) {
int res = 0;
for(int k = 0; k < strlen(str[i]); k++) {
if(str[j][k] != str[i][k]) res++;
}
q[++m].a = i;
q[m].b = j;
q[m].c = res;
}
}
int ans = kruskal();
printf("The highest possible quality is 1/%d.\n", ans);
}
return 0;
}
题意:有n个农场,已知这n个农场都互相相通,有一定的距离,现在每个农场需要装光纤,问怎么安装光纤能将所有农场都连通起来,并且要使光纤距离最小,输出安装光纤的总距离
直接写就行了。。。。。。
链接:poj 1258
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define ll long long
using namespace std;
const int maxn = 2200 + 10;
const int maxm = 1001000;
const int inf = 0x3f3f3f3f;
int fa[maxn];
int rnk[maxn];
int num[maxn];
int n, m;
struct node {
int a, b;
int c;
friend bool operator < (node x, node y) {
return x.c < y.c;
}
}q[maxm];
void init() {
for(int i = 0; i <= n; i++) {
fa[i] = i;
rnk[i] = 0;
}
}
int getf(int x) {
if(x != fa[x]) {
fa[x] = getf(fa[x]);
}
return fa[x];
}
void unions(int x, int y) {
x = getf(x);
y = getf(y);
if(x == y) return;
if(rnk[x] < rnk[y]) {
fa[x] = y;
}
else {
fa[y] = x;
if(rnk[x] == rnk[y]) rnk[x]++;
}
}
bool same(int x, int y) {
return getf(x) == getf(y);
}
int kruskal() {
init();
sort(q + 1, q + 1 + m);
int ans = 0;
int nedge = 0;
for(int i = 1; i <= m && nedge != n - 1; i++) {
if(getf(q[i].a) != getf(q[i].b)) {
unions(q[i].a, q[i].b);
ans += q[i].c;
nedge++;
}
}
//if(nedge < n - 1) ans = -1;
return ans;
}
int main()
{
int T, kcase = 0;
while(~scanf("%d", &n)) {
m = 0;
int res;
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
scanf("%d", &res);
if(j > i) {
q[++m].a = i;
q[m].b = j;
q[m].c = res;
}
}
}
int ans = kruskal();
printf("%d\n", ans);
}
return 0;
}
题意:中文题
直接kruskal
链接:hdu 1233
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define ll long long
using namespace std;
const int maxn = 10000 + 10;
const int maxm = 1000000 + 10;
const int inf = 0x3f3f3f3f;
int fa[maxn];
int rnk[maxn];
int n, m;
struct node {
int a, b, c;
friend bool operator < (node x, node y) {
return x.c < y.c;
}
}q[maxn];
void init() {
for(int i = 0; i <= n; i++) {
fa[i] = i;
rnk[i] = 0;
}
}
int getf(int x) {
if(x != fa[x]) {
fa[x] = getf(fa[x]);
}
return fa[x];
}
void unions(int x, int y) {
x = getf(x);
y = getf(y);
if(x == y) return;
if(rnk[x] < rnk[y]) {
fa[x] = y;
}
else {
fa[y] = x;
if(rnk[x] == rnk[y]) rnk[x]++;
}
}
bool same(int x, int y) {
return getf(x) == getf(y);
}
int kruskal(int n, int m) {
sort(q + 1, q + 1 + m);
int ans = 0;
int nedge = 0;
for(int i = 1; i <= m && nedge != n - 1; i++) {
if(getf(q[i].a) != getf(q[i].b)) {
unions(q[i].a, q[i].b);
ans += q[i].c;
nedge++;
}
}
if(nedge < n - 1) ans = -1;
return ans;
}
int main()
{
int T, kcase = 0;
while(scanf("%d", &n) && n) {
init();
for(int i = 1; i <= n * (n - 1) / 2; i++) {
scanf("%d %d %d", &q[i].a, &q[i].b, &q[i].c);
}
int ans = kruskal(n, n * (n - 1) / 2);
printf("%d\n", ans);
}
return 0;
}
题意: 中文题
注意加边的限制条件,数据类型
链接:hdu 1875
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define ll long long
using namespace std;
const int maxn = 10000 + 10;
const int maxm = 1000000 + 10;
const int inf = 0x3f3f3f3f;
int fa[maxn];
int rnk[maxn];
int n, m;
struct node {
int a, b;
double c;
friend bool operator < (node x, node y) {
return x.c < y.c;
}
}q[maxn];
void init() {
for(int i = 0; i <= n; i++) {
fa[i] = i;
rnk[i] = 0;
}
}
int getf(int x) {
if(x != fa[x]) {
fa[x] = getf(fa[x]);
}
return fa[x];
}
void unions(int x, int y) {
x = getf(x);
y = getf(y);
if(x == y) return;
if(rnk[x] < rnk[y]) {
fa[x] = y;
}
else {
fa[y] = x;
if(rnk[x] == rnk[y]) rnk[x]++;
}
}
bool same(int x, int y) {
return getf(x) == getf(y);
}
double kruskal(int n, int m) {
sort(q + 1, q + 1 + m);
double ans = 0;
int nedge = 0;
for(int i = 1; i <= m && nedge != n - 1; i++) {
if(getf(q[i].a) != getf(q[i].b)) {
unions(q[i].a, q[i].b);
ans += q[i].c;
nedge++;
}
}
if(nedge < n - 1) ans = -1;
return ans;
}
int x[maxn], y[maxn];
double dis(int i, int j) {
return sqrt((x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]));
}
int main()
{
int T, kcase = 0;
cin >> T;
while(T--) {
scanf("%d", &n);
init();
m = 0;
for(int i = 1; i <= n; i++) {
scanf("%d %d", &x[i], &y[i]);
for(int j = 1; j < i; j++) {
if(dis(i, j) >= 10 && dis(i, j) <= 1000) {
q[++m].a = i;
q[m].b = j;
q[m].c = 100 * dis(i, j);
}
}
}
double ans = kruskal(n, m);
if(ans != -1)printf("%.1lf\n", ans);
else puts("oh!");
}
return 0;
}