- 人工智能的本质解构:从二进制桎梏到造物主悖论
Somnolence.·.·.·.
人工智能人工智能ai
一、数学牢笼中的困兽:人工智能的0-1本质人工智能的底层逻辑是数学暴力的具象化演绎。晶体管开关的物理震荡被抽象为布尔代数的0-1序列,冯·诺依曼架构将思维简化为存储器与运算器的机械对话。即使深度神经网络看似模拟人脑突触,其本质仍是矩阵乘法的迭代游戏——波士顿动力机器人的空翻动作不过是微分方程求解的物理引擎呈现,AlphaGo的围棋神话只是蒙特卡洛树搜索的概率统计。这种基于有限离散数学的架构,注定人
- erf 和 erfc 函数介绍以及在通信系统中的应用
正是读书时
知识点概率论信息与通信
1.误差函数(erf)误差函数\(\text{erf}(x)\)是一种特殊函数,在概率、统计和偏微分方程中有广泛应用。它的定义为:\[\text{erf}(x)=\frac{2}{\sqrt{\pi}}\int_0^xe^{-t^2}\,dt\]特性:-\(\text{erf}(0)=0\)-\(\text{erf}(\infty)=1\)-\(\text{erf}(-x)=-\text{erf}
- 工程计算4——线性方程组的问题敏感性
sda42342342423
math
扰动方程方程组(A+△A)x=b+△b为方程Ax=b的扰动方程△A,△b为由舍入误差所产生的扰动矩阵和扰动向量近似解与Ax=b的解x的相对误差不大称为良态方程,否则为病态方程。向量和矩阵的范数为了研究线性方程组近似解的误差估计和迭代法的收敛性,引入的对向量和矩阵的度量。向量的范数定义设XϵRn,||X||表示定义在Rn上的一个实值函数,称之为X的范数,性质非负性:即对一切X∈Rn,X≠0,||X|
- 不坑盒子Office插件:全能助手,办公效率的革命性提升
不坑老师
microsoftwordexcelpowerpointwps
在快节奏的办公环境中,时间就是金钱,效率就是生命。不坑盒子Office插件,一款专为Word、Excel、PPT和WPS三件套设计的全能办公助手,致力于让办公工作变得更加轻松、高效。一键式自动化,让复杂工作变简单自动排版:快速设置正文、标题格式,告别手动调整。OCR文字识别:图片文字快速转换,需要腾讯云OCR接口支持。化学公式编辑:自动排版化学方程式,让科学文档更专业。表格智能填充:一键编号填充,
- poj 1142 Smith Numbers(数论:欧拉函数变形)
殷华
数学/数论
给定一个数n找出大于n的最小smith数smith数定义如下:一个数n为smith数当且仅当它的所有质因子各位数之和等于n的所有位数之和且n不是素数那么给定一个n,我们就可以每次+1判断是否为smith数这道题唯一的难点就在于找到一个数的所有素数因子套用欧拉函数变形即可375ms代码如下:#include#include#defineLLlonglongLLn;intget_ans(LLn){in
- LeetCode--32. 最长有效括号【栈和dp】
Rinai_R
LeetCodeleetcode算法职场和发展golang数据结构动态规划
32.最长有效括号前言分享一下dp和栈两个方法正文给你一个只包含'('和')'的字符串,找出最长有效(格式正确且连续)括号子串的长度。这道题与20.有效的括号类似,但是这道题需要计算出最长的有效括号字串的长度,所以做法并不完全一样。动态规划该题目dp方法最难的就是得出状态转移方程,只要克服了这一点,剩下都很简单,下面,我们以字符串"((())()("为例子。从左向右遍历,设定f[i]为包含当前下标
- 【LeetCode周赛】6433.矩阵中移动的最大次数
积跬步方千里
LeetCodeleetcode算法
动态规划五部曲classSolution{public:intmaxMoves(vector>&grid){/*动态规划解决单序列问题:根据题目的特点找出当前遍历元素对应的最优解(或解的数目)和前面若干元素(通常是一个或两个)的最优解(或解的数目)的关系,并以此找出相应的状态转移方程。从题目的描述来看,需要从当前遍历的元素dp更新未来的dp值,这显然不符合动态规划的思想,所以需要将问题进行转换,转
- 解锁动态规划的奥秘
zxfbx
动态规划算法
前言:在动态规划的众多问题中,多状态DP问题是一个非常重要的类别。它的难点在于如何设计合适的状态表示和转移方程,从而高效地解决问题。多状态DP的核心思想在于:针对问题的不同属性或限制条件,将状态表示扩展为多个维度,使得状态可以更加精确地描述问题的子结构。这种方法既可以帮助我们更好地分解问题,又能够在求解过程中保留更多的信息,从而为最终的结果提供完整的支持。在实际应用中,多状态DP常用于解决路径规划
- 背包入门——LeetCode416. 分割等和子集
sunnyLKX
LeetCodejava动态规划leetcode算法数据结构
题目描述:给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。注意:每个数组中的元素不会超过100数组的大小不会超过200示例1:输入:[1,5,11,5]输出:true解释:数组可以分割成[1,5,5]和[11].示例2:输入:[1,2,3,5]输出:false解释:数组不能分割成两个元素和相等的子集.思路:动态规划的基本流程是定义状态并找到状态转移方程,
- 2.【线性代数】——矩阵消元
sda42342342423
math线性代数矩阵
二矩阵消元1.消元法2.单行或者单列的矩阵乘法2.1单行矩阵乘法2.2单列矩阵乘法3.用矩阵记录消元过程(初等矩阵)【行的线性组合(数乘和加法)】3.1row2-3row1的矩阵描述3.2row3-2row2的矩阵描述3.3矩阵乘法的性质4.用矩阵记录消元过程(置换矩阵)行列交换4.1行交换4.1列交换5.逆矩阵1.消元法求解方程组{x+2y+z=23x+8y+z=124y+z=2\begin{c
- 高等代数复习:线性空间
爱吃白饭
高等代数线性代数学习笔记
文章目录线性空间定义和性质线性相关性与秩基与维数矩阵的秩同构坐标子空间子空间的定义和性质子空间的和与交直和陪集和商空间解线性方程组本篇文章适合个人复习翻阅,不建议新手入门使用线性空间定义和性质定义:(线性空间)设集合VVV和数域K\mathbb{K}K,在VVV上定义加法+:V×V→V,(α,β)↦α+β+:V\timesV\toV,(\alpha,\beta)\mapsto\alpha+\bet
- 数学建模与MATLAB实现:稳定状态模型与资源管理策略
青橘MATLAB学习
#数学建模Matlab编程实验数学建模算法
引言在实际问题中,动态过程的瞬时性态往往难以直接分析,而研究其稳定状态的特征则更具实际意义。本章介绍如何通过微分方程稳定性理论,结合再生资源管理、种群竞争等案例,分析系统的平衡点及稳定性,为实际决策提供数学依据。一、微分方程稳定性理论1.1基本概念自治系统:若微分方程组不显含时间变量ttt,则称为自治系统。例如:dxdt=F(x)\frac{dx}{dt}=F(x)dtdx=F(x)非自治系统可通
- Zane的线代学习笔记 #6 置换与转置
ZaneYooo
Zane的线代学习笔记学习笔记算法
前言上篇笔记的末尾我们提到过置换矩阵和转置的内容,不过并不完整,在这篇笔记中,我会对这两个知识点进行补充,讲完之后,我们的线性方程部分就基本上讲完了。正文1.排列与置换矩阵上篇笔记的末尾提到了置换矩阵的概念,不过并不完整,现在,我们将会把一些不严谨的地方补上,然后将上一篇的置换矩阵部分做一个归纳整理。首先,上篇笔记我们说置换矩阵是单位矩阵进行行交换得到的(或者就是单位矩阵本身),但是为什么说置换矩
- 探索约数:试除法,约数之和,最大公约数
Lostgreen
数据结构&算法算法最大公约数
引言约数(Divisor)是数论中的基本概念之一,指能够整除某个数的整数。约数在数学、计算机科学和密码学中有着广泛的应用。本文将详细介绍约数的相关知识,包括试除法求约数、最大公约数算法(如辗转相除法和更相减损术),并阐明这些算法的原理和步骤。1.试除法求约数1.1算法原理试除法是一种简单直观的求约数的方法。对于一个数nnn,如果ddd是nnn的约数,则nnn能被ddd整除。通过遍历1到n\sqrt
- 2021-09-09二分法求方程近似解【C语言】
xxxjrr
算法学习c语言
文章目录1.题目描述2.题解思路与算法3.代码1.题目描述二分法是一种求解方程近似根的方法。对于一个函数f(x),使用二分法求f(x)近似解的时候,我们先设定一个迭代区间(在这个题目上,我们之后给出了的两个初值决定的区间[−20,20]),区间两端自变量x的值对应的f(x)值是异号的,之后我们会计算出两端x的中点位置x′所对应的f(x′),然后更新我们的迭代区间,确保对应的迭代区间的两端x的值对应
- 代码随想录Day43 | 300.最长递增子序列,674.最长连续递增序列,718.最长重复子数组
Sanctyzl
代码随想录算法训练营打卡算法动态规划leetcodejava数据结构
代码随想录Day43|300.最长递增子序列,674.最长连续递增序列,718.最长重复子数组300.最长递增子序列dp[i]定义:从0-i范围内计算,以nums[i]为结尾的最长严格递增子序列的长度。状态转移方程:if(nums[i]>nums[j])dp[i]=Math.max(dp[i],dp[j]+1);classSolution{publicintlengthOfLIS(int[]num
- ACM培训4
ZIZIZIZIZ()
算法笔记
学习总结--基础数论大多为模板一、GCD(最大公约数)①辗转相除法longlonggcd(longa,longb){longlongr;while(b!=0){r=a%b;a=b;b=r;}returna;}②扩展欧几里得算法intexgcd(inta,intb,int&x,int&y){if(b==0){x=1;y=0;returnaa;}intans=exgcd(b,a%b,x,y);intk
- 一阶系统和二阶系统
不知道是谁2
程序人生
一阶系统和二阶系统是动态系统分析中的两个基本概念,它们的主要区别在于系统的响应特性、阶次以及对输入信号的处理方式:1.**阶数**:-**一阶系统**:这类系统只有一个积分项,如常微分方程中的形式为dy/dt=k*x(t)+b,其中dy/dt表示状态变化率,k是增益系数,b可能是偏置。它的响应速度快,直接对输入做出反应。-**二阶系统**:有两个阶跃响应,通常包含一个导数项和一个积分项,如d^2y
- 从小白开始的动态规划
不想编程小谭
算法c++算法动态规划
一、动态规划的核心思想动态规划(DP)通过拆分问题+记忆化计算解决复杂问题,核心步骤为:定义状态:用变量(如dp[i])表示子问题的解状态转移方程:建立子问题之间的关系式初始化:确定基础情况的初始值计算顺序:确定填表方向(自底向上/自顶向下)二、动态规划解题四部曲分析问题是否具有重叠子问题和最优子结构定义明确的状态表示推导状态转移关系处理边界条件并实现三、经典DP问题分类与实战类型1:记忆化递归(
- 【数论】—— 素数
Tom_wsc
数论算法
素数定义因数只有111和这个数本身的数被称作素数。注意:111既不是素数也不是合数,222是最小的素数。两个关于素数的定理唯一分解定理对于任意大于111的整数xxx,都可以分解成若干个素数的乘积:x=p1a1×p2a2×p3a3×⋯×pnan(ai∈Z+)x=p_1^{a_1}\timesp_2^{a_2}\timesp_3^{a_3}\times\cdots\timesp_n^{a_n}(a_i
- 【力扣】279.完全平方数
睡不着还睡不醒
leetcodeleetcode算法职场和发展
AC截图题目思路总结动态规划方程得出的思路找到最小子问题,涉及到当前数和上一个数的跨度,以及上一个数的结果如何变成当前数的结果这两个点。1,当前数n和上一个数的跨度:假设n=12,上一个数可以是11,11+1=12,OK;上一个数可以是8,因为8+4=12;上一个数可以是3,因为3+9=12;为什么11、8、3可以?因为题目要求是完全平方数相加。只有11加上1(11),8+4(22),3+9(3*
- 【运行别超时】最近小何去在我们学校的比赛中遇到一个有意思的题,答案做出来了,但运行总是超时。这怎么解决呢?来看看吧。
小浩~
c语言
题目内容如下:小C最近在研究数论,他发现质数有太多美妙的性质了,于是他想要统计一下一段区域里的数有多少是质数,请你编程帮他解决这个问题吧。输入格式:第一行一个正整数t,表示数据组数。(1≤t≤105)接下来t行,每行两个正整数l,r,表示区间的左右端点。(1≤l≤r≤106)输出格式:每组数据输出一个整数,表示闭区间[l,r]中的质数数量输入样例:21326输出样例:在这里给出相应的输出。例如:2
- 并查集题目
好好学Java吖
javaleetcode算法数据结构
并查集题目聚合一块(蓝桥)合根植物(蓝桥)等式方程的可满足性省份数量并查集(Union-Find)算法是一个专门针对「动态连通性」的算法。双方向的连通。模板:classUF{//连通分量个数privateintcount;//存储每个节点的父节点privateint[]parent;//n为图中节点的个数publicUF(intn){this.count=n;parent=newint[n];fo
- 数学与光学:光的传播和干涉的数学描述
AI天才研究院
计算ChatGPTDeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《数学与光学:光的传播和干涉的数学描述》关键词:光学,数学模型,光传播,干涉,波动方程摘要:本文旨在深入探讨光学中光的传播和干涉现象的数学描述。我们将从基础概念出发,逐步引入光的传播路径分析、斯涅尔定律和光的衍射现象,再到干涉原理和数学模型,最后探讨特殊情况下的干涉现象及其应用。文章将结合数学公式和编程实例,提供清晰的逻辑推理和分析过程,以帮助读者更好地理解和掌握这些核心概念。目录大纲《数学与光学
- 有限长序列的z变换收敛域_几类序列的Z变换收敛域.PPT
沈阳无距科技
有限长序列的z变换收敛域
几类序列的Z变换收敛域第七章离散时间系统的Z域分析本章的主要内容z变换定义、典型序列的z变换z变换的收敛域逆z变换z变换的基本性质z变换与拉氏变换的关系利用z变换解差分方程离散系统的系统函数序列的傅里叶变换第一节引言一、Z变换方法的发展历史1730年,英国数学家棣莫弗(DeMoivre1667-1754)将生成函数(generationfunction)的概念引入概率理论中。19世纪拉普拉斯(P.
- 2025年日祭
JeremyHe1209
笔记
本文将同步发表于洛谷(暂无法访问)、CSDN与Github个人博客(暂未发布)本蒟自2025.2.8开始半停课。任务计划(站外题与专题)数了一下,通过人数比较高的题,也就是我准备补的题,刚好差不多100道题。于是……摆烂百题计划开始!(糖丸了)(2025.2.8)NetworkNetworkofSchoolsDP优化——矩阵数论——容斥、二项式反演DP优化——斜率优化数据结构——左偏树数据结构——
- 机器学习数学基础:20.方程组解的结构
@心都
机器学习数学基础机器学习人工智能
一、教程简介本教程专门为线性代数零基础的小白打造,旨在全面且细致地讲解解方程组与基础解系的相关知识,助力大家逐步扎实地掌握这一重要内容板块。二、知识目标透彻理解非齐次与齐次线性方程组的定义、本质区别以及对应的解法。熟练掌握判断方程组解的存在性的方法,精准把握秩在其中起到的决定性作用。能够独立且准确地求解齐次线性方程组,并规范地表示出其通解。精通判断一个向量组是否为齐次线性方程组的基础解系的方法,并
- 1.31-子序列问题
_Chipen
算法知识与算法题leetcodec++数据结构算法
Code-1.31-子序列问题300.最长递增子序列题目分析1.状态表示dp[i]表示:以i结尾的所有子序列中,最长递增子序列的长度。2.状态转移方程dp[i]长度为1->1长度大于1->nums[j]max(dp[j]+1)3.初始化把表里所有值初始化为1。4.填表顺序从左往右。5.返回值dp表中的最大值。代码实现classSolution{public:intlengthOfLIS(vecto
- Code-1.16-路径问题
_Chipen
算法知识与算法题动态规划算法leetcode数据结构c++
Code-1.16-路径问题62.不同路径题目62.不同路径一个机器人位于一个mxn网格的左上角(起始点在下图中标记为“Start”)。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。问总共有多少条不同的路径?讲解算法原理状态表示:以[i,j]为结尾,走到[i,j]位置时,一共有多少方式。状态转移方程:最近的一步,划分问题。dp[i][j]=dp[
- 解析数论基础:第三十三章 零点分布(二)
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
解析数论基础:第三十三章零点分布(二)作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:解析数论、黎曼ζ函数、零点分布、素数定理、蒙哥马利猜想、配对相关函数、随机矩阵理论1.背景介绍1.1问题的由来解析数论是现代数学的重要分支,它利用复变函数论等分析学的方法研究数论问题。其中一个核心课题就是研究黎曼ζ函数的性质,特别是它的零点分布。这个问题不仅
- ASM系列四 利用Method 组件动态注入方法逻辑
lijingyao8206
字节码技术jvmAOP动态代理ASM
这篇继续结合例子来深入了解下Method组件动态变更方法字节码的实现。通过前面一篇,知道ClassVisitor 的visitMethod()方法可以返回一个MethodVisitor的实例。那么我们也基本可以知道,同ClassVisitor改变类成员一样,MethodVIsistor如果需要改变方法成员,注入逻辑,也可以
- java编程思想 --内部类
百合不是茶
java内部类匿名内部类
内部类;了解外部类 并能与之通信 内部类写出来的代码更加整洁与优雅
1,内部类的创建 内部类是创建在类中的
package com.wj.InsideClass;
/*
* 内部类的创建
*/
public class CreateInsideClass {
public CreateInsideClass(
- web.xml报错
crabdave
web.xml
web.xml报错
The content of element type "web-app" must match "(icon?,display-
name?,description?,distributable?,context-param*,filter*,filter-mapping*,listener*,servlet*,s
- 泛型类的自定义
麦田的设计者
javaandroid泛型
为什么要定义泛型类,当类中要操作的引用数据类型不确定的时候。
采用泛型类,完成扩展。
例如有一个学生类
Student{
Student(){
System.out.println("I'm a student.....");
}
}
有一个老师类
- CSS清除浮动的4中方法
IT独行者
JavaScriptUIcss
清除浮动这个问题,做前端的应该再熟悉不过了,咱是个新人,所以还是记个笔记,做个积累,努力学习向大神靠近。CSS清除浮动的方法网上一搜,大概有N多种,用过几种,说下个人感受。
1、结尾处加空div标签 clear:both 1 2 3 4
.div
1
{
background
:
#000080
;
border
:
1px
s
- Cygwin使用windows的jdk 配置方法
_wy_
jdkwindowscygwin
1.[vim /etc/profile]
JAVA_HOME="/cgydrive/d/Java/jdk1.6.0_43" (windows下jdk路径为D:\Java\jdk1.6.0_43)
PATH="$JAVA_HOME/bin:${PATH}"
CLAS
- linux下安装maven
无量
mavenlinux安装
Linux下安装maven(转) 1.首先到Maven官网
下载安装文件,目前最新版本为3.0.3,下载文件为
apache-maven-3.0.3-bin.tar.gz,下载可以使用wget命令;
2.进入下载文件夹,找到下载的文件,运行如下命令解压
tar -xvf apache-maven-2.2.1-bin.tar.gz
解压后的文件夹
- tomcat的https 配置,syslog-ng配置
aichenglong
tomcathttp跳转到httpssyslong-ng配置syslog配置
1) tomcat配置https,以及http自动跳转到https的配置
1)TOMCAT_HOME目录下生成密钥(keytool是jdk中的命令)
keytool -genkey -alias tomcat -keyalg RSA -keypass changeit -storepass changeit
- 关于领号活动总结
alafqq
活动
关于某彩票活动的总结
具体需求,每个用户进活动页面,领取一个号码,1000中的一个;
活动要求
1,随机性,一定要有随机性;
2,最少中奖概率,如果注数为3200注,则最多中4注
3,效率问题,(不能每个人来都产生一个随机数,这样效率不高);
4,支持断电(仍然从下一个开始),重启服务;(存数据库有点大材小用,因此不能存放在数据库)
解决方案
1,事先产生随机数1000个,并打
- java数据结构 冒泡排序的遍历与排序
百合不是茶
java
java的冒泡排序是一种简单的排序规则
冒泡排序的原理:
比较两个相邻的数,首先将最大的排在第一个,第二次比较第二个 ,此后一样;
针对所有的元素重复以上的步骤,除了最后一个
例题;将int array[]
- JS检查输入框输入的是否是数字的一种校验方法
bijian1013
js
如下是JS检查输入框输入的是否是数字的一种校验方法:
<form method=post target="_blank">
数字:<input type="text" name=num onkeypress="checkNum(this.form)"><br>
</form>
- Test注解的两个属性:expected和timeout
bijian1013
javaJUnitexpectedtimeout
JUnit4:Test文档中的解释:
The Test annotation supports two optional parameters.
The first, expected, declares that a test method should throw an exception.
If it doesn't throw an exception or if it
- [Gson二]继承关系的POJO的反序列化
bit1129
POJO
父类
package inheritance.test2;
import java.util.Map;
public class Model {
private String field1;
private String field2;
private Map<String, String> infoMap
- 【Spark八十四】Spark零碎知识点记录
bit1129
spark
1. ShuffleMapTask的shuffle数据在什么地方记录到MapOutputTracker中的
ShuffleMapTask的runTask方法负责写数据到shuffle map文件中。当任务执行完成成功,DAGScheduler会收到通知,在DAGScheduler的handleTaskCompletion方法中完成记录到MapOutputTracker中
- WAS各种脚本作用大全
ronin47
WAS 脚本
http://www.ibm.com/developerworks/cn/websphere/library/samples/SampleScripts.html
无意中,在WAS官网上发现的各种脚本作用,感觉很有作用,先与各位分享一下
获取下载
这些示例 jacl 和 Jython 脚本可用于在 WebSphere Application Server 的不同版本中自
- java-12.求 1+2+3+..n不能使用乘除法、 for 、 while 、 if 、 else 、 switch 、 case 等关键字以及条件判断语句
bylijinnan
switch
借鉴网上的思路,用java实现:
public class NoIfWhile {
/**
* @param args
*
* find x=1+2+3+....n
*/
public static void main(String[] args) {
int n=10;
int re=find(n);
System.o
- Netty源码学习-ObjectEncoder和ObjectDecoder
bylijinnan
javanetty
Netty中传递对象的思路很直观:
Netty中数据的传递是基于ChannelBuffer(也就是byte[]);
那把对象序列化为字节流,就可以在Netty中传递对象了
相应的从ChannelBuffer恢复对象,就是反序列化的过程
Netty已经封装好ObjectEncoder和ObjectDecoder
先看ObjectEncoder
ObjectEncoder是往外发送
- spring 定时任务中cronExpression表达式含义
chicony
cronExpression
一个cron表达式有6个必选的元素和一个可选的元素,各个元素之间是以空格分隔的,从左至右,这些元素的含义如下表所示:
代表含义 是否必须 允许的取值范围 &nb
- Nutz配置Jndi
ctrain
JNDI
1、使用JNDI获取指定资源:
var ioc = {
dao : {
type :"org.nutz.dao.impl.NutDao",
args : [ {jndi :"jdbc/dataSource"} ]
}
}
以上方法,仅需要在容器中配置好数据源,注入到NutDao即可.
- 解决 /bin/sh^M: bad interpreter: No such file or directory
daizj
shell
在Linux中执行.sh脚本,异常/bin/sh^M: bad interpreter: No such file or directory。
分析:这是不同系统编码格式引起的:在windows系统中编辑的.sh文件可能有不可见字符,所以在Linux系统下执行会报以上异常信息。
解决:
1)在windows下转换:
利用一些编辑器如UltraEdit或EditPlus等工具
- [转]for 循环为何可恨?
dcj3sjt126com
程序员读书
Java的闭包(Closure)特征最近成为了一个热门话题。 一些精英正在起草一份议案,要在Java将来的版本中加入闭包特征。 然而,提议中的闭包语法以及语言上的这种扩充受到了众多Java程序员的猛烈抨击。
不久前,出版过数十本编程书籍的大作家Elliotte Rusty Harold发表了对Java中闭包的价值的质疑。 尤其是他问道“for 循环为何可恨?”[http://ju
- Android实用小技巧
dcj3sjt126com
android
1、去掉所有Activity界面的标题栏
修改AndroidManifest.xml 在application 标签中添加android:theme="@android:style/Theme.NoTitleBar"
2、去掉所有Activity界面的TitleBar 和StatusBar
修改AndroidManifes
- Oracle 复习笔记之序列
eksliang
Oracle 序列sequenceOracle sequence
转载请出自出处:http://eksliang.iteye.com/blog/2098859
1.序列的作用
序列是用于生成唯一、连续序号的对象
一般用序列来充当数据库表的主键值
2.创建序列语法如下:
create sequence s_emp
start with 1 --开始值
increment by 1 --増长值
maxval
- 有“品”的程序员
gongmeitao
工作
完美程序员的10种品质
完美程序员的每种品质都有一个范围,这个范围取决于具体的问题和背景。没有能解决所有问题的
完美程序员(至少在我们这个星球上),并且对于特定问题,完美程序员应该具有以下品质:
1. 才智非凡- 能够理解问题、能够用清晰可读的代码翻译并表达想法、善于分析并且逻辑思维能力强
(范围:用简单方式解决复杂问题)
- 使用KeleyiSQLHelper类进行分页查询
hvt
sql.netC#asp.nethovertree
本文适用于sql server单主键表或者视图进行分页查询,支持多字段排序。KeleyiSQLHelper类的最新代码请到http://hovertree.codeplex.com/SourceControl/latest下载整个解决方案源代码查看。或者直接在线查看类的代码:http://hovertree.codeplex.com/SourceControl/latest#HoverTree.D
- SVG 教程 (三)圆形,椭圆,直线
天梯梦
svg
SVG <circle> SVG 圆形 - <circle>
<circle> 标签可用来创建一个圆:
下面是SVG代码:
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
<circle cx="100" c
- 链表栈
luyulong
java数据结构
public class Node {
private Object object;
private Node next;
public Node() {
this.next = null;
this.object = null;
}
public Object getObject() {
return object;
}
public
- 基础数据结构和算法十:2-3 search tree
sunwinner
Algorithm2-3 search tree
Binary search tree works well for a wide variety of applications, but they have poor worst-case performance. Now we introduce a type of binary search tree where costs are guaranteed to be loga
- spring配置定时任务
stunizhengjia
springtimer
最近因工作的需要,用到了spring的定时任务的功能,觉得spring还是很智能化的,只需要配置一下配置文件就可以了,在此记录一下,以便以后用到:
//------------------------定时任务调用的方法------------------------------
/**
* 存储过程定时器
*/
publi
- ITeye 8月技术图书有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的8月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
8月试读活动回顾:
http://webmaster.iteye.com/blog/2102830
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《跨终端Web》
gleams:http