- AI推介-多模态视觉语言模型VLMs论文速览(arXiv方向):2024.04.15-2024.04.25
小小帅AIGC
VLM论文时报人工智能语言模型自然语言处理VLM视觉语言模型多模态计算机视觉
文章目录~1.AutoGluon-Multimodal(AutoMM):SuperchargingMultimodalAutoMLwithFoundationModels2.FusionofDomain-AdaptedVisionandLanguageModelsforMedicalVisualQuestionAnswering3.CatLIP:CLIP-levelVisualRecognitio
- AutoML原理与代码实例讲解
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AutoML原理与代码实例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着数据量的爆炸式增长和算法的日益复杂,机器学习在各个领域的应用越来越广泛。然而,机器学习模型的开发过程往往需要大量的专业知识和经验。数据预处理、特征工程、模型选择、参数调优等步骤都需要人工进行,这使得机器学习模型的开发变得复杂且耗时。为了解决这
- 遗传算法与深度学习实战(1)——进化深度学习
盼小辉丶
遗传算法与深度学习实战深度学习人工智能遗传算法
遗传算法与深度学习实战(1)——进化深度学习0.前言1.进化深度学习1.1进化深度学习简介1.2进化计算简介2.进化深度学习应用场景3.深度学习优化3.1优化网络体系结构4.通过自动机器学习进行优化4.1自动机器学习简介4.2AutoML工具5.进化深度学习应用5.1模型选择:权重搜索5.2模型架构:架构优化5.3超参数调整/优化5.4验证和损失函数优化5.5增强拓扑的神经进化小结系列链接0.前言
- Python自动化机器学习库之evalml使用详解
Rocky006
python人工智能开发语言
概要数据科学是当今科技领域中不可或缺的一部分,而机器学习是数据科学的核心。然而,构建和部署机器学习模型常常需要大量的时间和精力,涉及到数据预处理、特征工程、模型选择、超参数调优等一系列复杂任务。为了简化这个过程,使其更加高效,EvalML库应运而生。EvalML是一款用于自动化机器学习(AutoML)的Python库,它可以自动完成机器学习工作流程的各个阶段。本文将详细介绍EvalML的功能和用法
- 【AutoML】AutoKeras 数据清洗与简单提纯
kida_yuan
Pythonpython数据处理automl
从上一章节可知,数据已经从4个数据源获取过来并已全部入库。目前数据库共分出11张表,如下图:mysql>usephw2_industry_bot;ReadingtableinformationforcompletionoftableandcolumnnamesYoucanturnoffthisfeaturetogetaquickerstartupwith-ADatabasechangedmysql
- Scikit-Learn 高级教程——自动化机器学习
Echo_Wish
Python笔记Python算法机器学习scikit-learn自动化
PythonScikit-Learn高级教程:自动化机器学习自动化机器学习是通过自动搜索和选择最佳模型及其超参数的过程,以简化机器学习任务的一种方法。Scikit-Learn中提供了AutoML工具,本篇博客将详细介绍如何使用AutoML来自动化机器学习任务。1.安装AutoML包首先,确保你已经安装了相应的AutoML包。Scikit-Learn提供了一些AutoML工具,其中一种常用的是TPO
- 使用强化学习进行神经网络结构搜索的代码以及修改
ThreeS_tones
DRL神经网络人工智能深度学习
目录代码一(UsingTensorFlow):代码二(UsingTensorFlow):代码三(UsingPyTorch):参考:本人在网上找了三个相关的代码,但是都有问题,这里记录一下修改哪些地方之后可以跑通。代码一(UsingTensorFlow):代码地址:https://github.com/wallarm/nascell-automl这个代码有详细的说明:TheFirstStep-by-
- NAS with RL(Using TensorFlow)
ThreeS_tones
DRLtensorflow人工智能python
目录代码一:train.pynet_manager.pycnn.pyreinforce.py代码二:train.pycontroller.pymodel.pymanager.pynascell.py代码一:代码地址:nascell-automl-master修改后代码(需要新建几个python文件):train.pyimportnumpyasnpimporttensorflow.compat.v1
- XGBoost系列8——XGBoost的未来:从强化学习到AutoML
theskylife
数据挖掘人工智能机器学习数据挖掘XGboostpython
目录写在开头1.XGBoost在强化学习中的应用1.1构建强化学习问题1.2XGBoost与深度强化学习的对比1.3实际任务中的成功案例2.XGBoost与AutoML的结合2.1XGBoost在自动特征工程中的应用2.2超参数优化和自动模型选择2.3实际案例:XGBoost与AutoML的成功结合3.基于XGBoost的前瞻性研究与发展趋势3.1模型的可解释性提升3.2对非结构化数据的更好适应3
- 机器学习没那么难,Azure AutoML帮你简单3步实现自动化模型训练
AI普惠大师
云计算azuremicrosoft机器学习自动化人工智能
在MachineLearning这个领域,通常训练一个业务模型的难点并不在于算法的选择,而在于前期的数据清理和特征工程这些纷繁复杂的工作,训练过程中的问题在于参数的反复迭代优化。AutoML是AzureDatabricks的一项功能,它自动的对数据进行清理和特征工程并使用数据尝试多种算法和参数来训练最佳机器学习模型。使用这种自动化模型训练可以满足以下业务问题的模型训练:1、分类问题:AutoML可
- 通俗科普文:贝叶斯优化与SMBO、高斯过程回归、TPE(附新书)
科技州与数据州
以下文章来源于SimpleAI,作者郭必扬贝叶斯优化是AutoML中的重要概念,近年来变得很火热。作为一种重要的基于先验的调参/策略选择技术,贝叶斯的应用范围也很广。但这个概念对于初次接触的同学可能较难理解,经过数天的论文研读、博客/教程/代码查阅,我总结了这篇科普文,也手绘了一些示意图,希望尽量在一篇文章内、通俗易懂地讲清楚什么是贝叶斯优化。本文目录:理清基本概念的关系各种超参数调节方法的对比G
- DeepCamera - 将相机转换为AI-Powered with Embedded / Android / Pi等。
Android征途
什么是SharpAIDeepCameraARMGPU上的深度学习视频处理监控,用于人脸识别以及更多方法。将数码相机变成AI供电的相机。使用ARMGPU/NPU的边缘AI生产级平台,利用AutoML。面向开发人员/儿童/家庭/中小企业/企业/云的第一个世界级EdgeAI全栈平台,由社区烘焙。用于深度学习边缘计算设备的完整堆栈系统,特别是使用图像刻录或Androidapk安装的shell设置。移动数据
- automl框架:AutoGluon介绍
李白唱着歌去镇上
automl框架:AutoGluon介绍原理大部分automl框架是基于超参数搜索技术,例如基于贝叶斯搜索的hyperopt技术等AutoGluon则依赖融合多个无需超参数搜索的模型,三个臭皮匠顶个诸葛亮stacking:在同一份数据上训练出多个不同类型的模型,这些模型可以是KNN、tree、核方法等,这些模型的输出进入到一个线性模型里面得到最终的输出,就是对这些输出做加权求和,这里的权重是通过训
- NAS入门(学习笔记)
清风2022
学习笔记NASAutoMLZero-shot深度学习人工智能
文章目录AutoMLNAS初期NAS当前NAS框架One-ShotNAS权重共享策略Zero-ShotNASZen-NASNASWOTEPENAS参考资料AutoML深度学习使特征学习自动化AutoML使深度学习自动化自动化机器学习(automatedmachinelearning)是一种自动化的数据驱动方法,并做出一系列决策。按模型类型划分,分为以下两类:ClassicalML:传统机器学习模型
- AutoKeras
缘起性空、
keras人工智能深度学习python
简介AutoKeras是一个开源的,基于Keras的自动机器学习(AutoML)库。它是一个用于自动化机器学习的开源软件库,提供自动搜索深度学习模型的架构和超参数的功能。相比于传统的机器学习方法,AutoKeras可以自动处理特征工程、模型选择、超参数调优等步骤,大大减少了繁琐的手动操作。AutoKeras旨在简化机器学习模型的开发过程,其基于Keras构建,并提供了一套高级API,使得模型的训练
- 详解数据科学自动化与机器学习自动化
澳鹏Appen
人工智能与机器学习计算机视觉训练数据机器学习自动化人工智能
过去十年里,人工智能(AI)构建自动化发展迅速并取得了多项成就。在关于AI未来的讨论中,您可能会经常听到人们交替使用数据科学自动化与机器学习自动化这两个术语。事实上,这些术语有着不同的定义:如今的自动化机器学习,即AutoML,特指模型构建自动化。但是,数据科学家的工作内容并不仅止于此。简单地说,数据科学家从数据中获取信息,以解决现实世界中的问题;机器学习只是数据科学家的众多工作方法之一。从数据预
- 我们如何在Pinterest Ads中使用AutoML,多任务学习和多塔模型
weixin_26726011
机器学习python人工智能tensorflow深度学习
ErnestWang|SoftwareEngineer,AdsRanking欧内斯特·王|软件工程师,广告排名PeoplecometoPinterestinanexplorationmindset,oftenengagingwithadsthesamewaytheydowithorganicPins.WithinadsourmissionistohelpPinnersgofrominspirati
- 谷歌15个人工智能开源免费项目!开发者:懂了
喜欢打酱油的老鸟
人工智能谷歌15个人工智能开源免费项目
2019-11-2114:37:20关于人工智能的开源项目,相信开发者们已经目睹过不少了,Github上也有大把的资源。不过笔者今天说的并非来自Github,而是来自科技“大厂”Google发布的一些涉及到机器学习、深度学习、神经网络等优质的人工智能开源项目,精心挑选了一部分推荐给大家学习。下面就来看一看。1、AdaNet:快速灵活的AutoML,可自主学习。AdaNet是一个基于TensorFl
- 如何通过 Al 的能力提升编程的效率?
向上的车轮
笔记人工智能
通过人工智能(AI)的技术,可以提升编程效率和能力。以下是一些建议和方法:代码自动生成:使用AI技术,可以根据程序员的需求和输入,自动生成代码。这可以提高编程效率,减少编写代码所需的时间。例如,使用AutoML(自动机器学习)技术,可以根据需求自动生成相应的代码。importrandomclassAnimal:def__init__(self,name,speed):self.name=names
- AutoML 和神经架构搜索初探
linjingyg
架构神经网络人工智能
来自CMU和DeepMind的研究人员最近发布了一篇有趣的新论文,称为可微分网络结构搜索(DARTS),它提供了一种神经网络结构搜索的替代方法,这是目前机器学习领域的一个大热门。神经网络结构搜索去年被大肆吹捧,Google首席执行官SundarPichai和GoogleAI负责人JeffDean宣称,神经网络结构搜索及其所需的大量计算能力对于机器学习的大众化至关重要。科技媒体争相报道了谷歌在神经网
- Azure 机器学习 - 使用受保护工作区时的网络流量流
TechLead KrisChang
azure机器学习人工智能microsoft
目录环境准备入站和出站要求方案:从工作室访问工作区方案:从工作室使用AutoML、设计器、数据集和数据存储方案:使用计算实例和计算群集方案:使用联机终结点入站通信出站通信方案:使用AzureKubernetes服务方案:使用Azure机器学习管理的Docker映像当Azure机器学习工作区和关联的资源在Azure虚拟网络中受保护时,资源之间的网络流量会发生改变。在没有虚拟网络的情况下,网络流量将通
- 实用机器学习-学习笔记
雨浅听风吟
机器学习学习人工智能
文章目录3.5多层感知机3.5.1手动提取特征到学习特征3.5.2线性方法到多层感知机3.5.3代码实现4.2过拟合和欠拟合4.2.1模型选择4.2.2总结9.1模型调参9.1.1思考与总结9.1.2基线baseline9.1.3SGDADAM9.1.4训练代价9.1.5AUTOML9.1.6要多次调参管理9.1.7复现实验的困难9.2超参数的优化9.2.1超参数的范围9.2.2超参数优化的算法黑
- 如何在 Azure 中使用自动机器学习进行模型训练
嵌入式杂谈
azure机器学习microsoft
自动机器学习(AutomatedMachineLearning,简称为AutoML)是一种通过自动化流程来简化模型训练和调优的技术。在Azure机器学习平台中,AutoML提供了丰富的功能和工具,使我们能够快速地训练和优化机器学习模型。本文将介绍如何在Azure中使用自动机器学习进行模型训练,并提供一些实用的技巧和注意事项。一、数据准备:在开始之前,我们需要准备用于训练的数据集。Azure机器学习
- AI调参师会被取代吗?对话AutoML初创公司探智立方
喜欢打酱油的老鸟
人工智能AI调参师探智立方AutoML
1955年,约翰·麦卡锡(JohnMcCarthy)、马文·闵斯基(MarvinMinsky)、克劳德·香农(ClaudeShannon)等人聚在一起,为第二年即将召开的具有重要历史意义的“达特矛斯会议”列了一份AI研究议题,排在首位的就是“AutomaticComputers”——自动编程计算机。作为AI的开山鼻祖,他们在这份纲领里写道:“我们相信,如果精心挑选一批科学家,在一起工作一个夏天,
- 论文笔记系列-Neural Network Search :A Survey
aiwanghuan5017
人工智能数据结构与算法
论文笔记系列-NeuralNetworkSearch:ASurvey论文笔记NASautomlsurveyreviewreinforcementlearningBayesianOptimizationevolutionaryalgorithm注:本文主要是结合自己理解对原文献的总结翻译,有的部分直接翻译成英文不太好理解,所以查阅原文会更直观更好理解。本文主要就SearchSpace、SearchS
- Azure 机器学习 - 使用 ONNX 对来自 AutoML 的计算机视觉模型进行预测
TechLead KrisChang
azure机器学习microsoft人工智能
目录一、环境准备二、下载ONNX模型文件2.1Azure机器学习工作室2.2Azure机器学习PythonSDK2.3生成模型进行批量评分多类图像分类三、加载标签和ONNX模型文件四、获取ONNX模型的预期输入和输出详细信息ONNX模型的预期输入和输出格式多类图像分类多类图像分类输入格式多类图像分类输出格式五、预处理多类图像分类多类图像分类无PyTorch多类图像分类有PyTorch使用ONNX运
- Azure 机器学习 - 设置 AutoML 训练时序预测模型
TechLead KrisChang
azure机器学习microsoft人工智能
目录一、环境准备二、训练和验证数据三、配置试验支持的模型配置设置特征化步骤自定义特征化四、可选配置频率和目标数据聚合启用深度学习目标滚动窗口聚合短时序处理非稳定时序检测和处理五、运行试验六、用最佳模型进行预测用滚动预测评估模型精度预测未来七、大规模预测多模型分层时序预测本文将介绍如何使用Azure机器学习自动化ML为时序预测模型设置AutoML训练。关注TechLead,分享AI全维度知识。作者拥
- Azure 机器学习 - 使用无代码 AutoML 训练分类模型
TechLead KrisChang
机器学习azuremicrosoft人工智能
了解如何在Azure机器学习工作室中使用Azure机器学习自动化ML,通过无代码AutoML来训练分类模型。此分类模型预测某个金融机构的客户是否会认购定期存款产品。关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。一、环境准备Azur
- Azure 机器学习 - 使用 AutoML 和 Python 训练物体检测模型
TechLead KrisChang
azure机器学习microsoft人工智能
目录一、Azure环境准备二、计算目标设置三、试验设置四、直观呈现输入数据五、上传数据并创建MLTable六、配置物体检测试验适用于图像任务的自动超参数扫描(AutoMode)适用于图像任务的手动超参数扫描作业限制七、注册和部署模型获取最佳试用版注册模型配置联机终结点创建终结点配置联机部署创建部署更新流量八、测试部署九、直观呈现检测结果十、清理资源本教程介绍如何通过Azure机器学习PythonS
- 谷歌发布全新AutoML,AI通过图灵测试
AIYStore
AutoML是Google最新的产品,能够根据问题自动确定最优参数和网络结构。它一定程度上再现了AlphaZero的设计理念,也比Zero更直观。GoogleAutoML系统自主编写机器学习代码,其效率在某种程度上竟然超过了专业的研发工程师。AutoML的目标并不是要将人类从开发过程中剥离出去,也不是要开发全新的人工智能,而是让人工智能继续维持某种速度来改变世界。李飞飞在GoogleCloudNe
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那