- 贪心算法经典问题
弥彦_
c++算法c++
目录贪心思想一、Dijkstra最短路问题问题描述:贪心策略:二、Prim和Kruskal最小生成树问题Prim算法:Kruskal算法:三、Huffman树问题问题描述:贪心策略:四、背包问题问题描述:贪心策略:五、硬币找零问题问题描述:贪心策略:六、区间合并问题问题描述:贪心策略:七、选择不相交区间问题问题描述:贪心策略:八、区间选点问题问题描述贪心策略九、区间覆盖问题问题描述:贪心策略:十、
- 算法打卡:第十一章 图论part11
菜鸟求带飞_
数据结构与算法算法图论数据结构java
今日收获:Floyd算法,A*算法,最短路算法总结1.Floyd算法题目链接:97.小明逛公园思路:Floyd用于解决多源最短路问题,对边的正负权值没有要求。核心是动态规划(1)dp数组的定义:grid[i][j][k]=m,表示节点i到节点j以中间节点[1...k]集合的最短距离为m(2)初始化:刚开始从i到j没有经过任何中间节点,所以k初始化为0(3)遍历顺序:算法相当于不断把新的节点加入,计
- 对于最短路问题的一些总结
白雾街
算法图论
1、Dijkstra算法:每次用离源点最短的边去更新其他边,图中不能存在负权边,否则会破坏性质**2、Bellman_Ford算法:非常暴力地去遍历所有地边,每次对边都进行更新,如果更新次数>n-1,则说明存在负权回路**下面解释一下为什么Bellman_Ford算法需要遍历n-1次:Bellman-Ford算法是一种用于解决单源最短路径问题的算法,它通过对图中的边进行松弛操作来逐步求解从源点到其
- Bellman-ford算法
可可亚
图论算法图论bellman–fordalgorithm
Bellman-ford算法解决的问题思路模版特定问题解决的问题最短路问题,时间复杂度为O(n∗m)O(n*m)O(n∗m),可以有负权边,一般情况下都是SPFA算法更加优越,一般只有一种情况下必须使用Bellman-ford算法,那就是限制到最小距离的边数k,其他情况下一般SPFA算法更加适用。思路对每条边都进行松弛操作n-1次,一点能实现最短路。松弛:例如一条边a->b,权值为w,那么dist
- 堆优化版的dijkstra算法
hongting不是dd
小白算法数据结构
对于单源最短路所有边都为正权边但是为稀疏图的最短路问题,应该采用堆优化版本的dijkstra算法,具体的优化是将朴素版的dijkstra算法中的寻找最短路径使用堆来优化,使本来在n次中遍历n次的n^2操作变为n*1,但是堆优化会导致后续的使用迭代的点更新距离的方法变为堆中需要logn才能修改一次,且一共修改m条边次,故时间复杂度使mlogn。其中堆优化可以分为两种方式,一种是手写堆,这种的优势是正
- 图论-BFS搜索图/树-最短路径问题的解决
微臣愚钝
算法(我一生之敌)图论宽度优先算法
续上篇~图论--DFS搜索图/树-CSDN博客先看第一次学习的博客!!有一些问题是广搜和深搜都可以解决的,例如岛屿问题,这里我们记dfs的写法就好啦,基本bfs能解决的,dfs也能解决,除了最短路问题!!!所以广搜的搜索方式就适合于解决两个点之间的最短路径问题。最短路问题也是之前认真学过的,看这两篇就可以了!!图论--最短路问题总结-CSDN博客嘻嘻嘻
- (代码随想录)BEllman_ford算法 及其优化 SPFA
cq.gi
算法
代码随想录(知识提炼)Bellman_ford算法用处解决带负权值的单源最短路问题核心思想对所有边进行松弛n-1次操作(n为节点数量),从而求得目标最短路。何为松弛minDist[B]表示到达B节点最小权值,minDist[B]有哪些状态可以推出来?状态一:minDist[A]+value可以推出minDist[B]状态二:minDist[B]本身就有权值(可能是其他边链接的节点B例如节点C,以至
- (代码随想录)floyd算法
cq.gi
算法
代码随想录用处多源最短路问题。(对边的权值正负没有要求,都可以处理)代码三维数组定义grid[i][j][k];grid数组来存图,那就把dp数组命名为grid。grid[i][j][k]=m,表示节点i到节点j以[1...k]集合为中间节点的最短距离为m。理解:即i到j在考虑经过k节点的情况下,最短路径,即,可能经过k节点,也有可能不经过k节点.由此引入递推公式:grid[i][j][k]=mi
- 图论 24. Floyd算法(多源最短路问题)
Mophead_Zarathustra
小白的代码随想录刷题笔记Mophead的小白刷题笔记leetcodepython代码随想录图论
图论24.Floyd算法(多源最短路问题)97.小明逛公园代码随想录卡码网无难度标识相对于前面的单源最短路解法,这道题扩展到了多源最短路问题。代码随想录:理解了遍历顺序才是floyd算法最精髓的地方。floyd算法的时间复杂度相对较高,适合稠密图且源点较多的情况。如果是稀疏图,floyd是从节点的角度去计算了,例如图中节点数量是1000,就一条边,那floyd的时间复杂度依然是O(n^3)。如果源
- 图论--单源最短路
weixin_30399821
BELLMAN-FORD/*bellman可以处理负权的单源最短路问题基本原理:每一次遍历所有的边,在第i次遍历所有边的时候就确定了由源点经过i条边所能到达的最进点由于n个点的最短路径中最多只有n-1条边-->边的遍历“最多”进行n-1次故复杂度为O(NM),有点高呐~优化:当某一轮遍历所有边后都没有进行过松弛操作-->则在该轮之前就已经确定了最短路负环的情况:遍历了n-1次边后仍然可以进行松弛操
- 图论--最短路算法
Dream_Maker_yangkai
c++图论算法知识点总结和梳理图论
图论–最短路算法–yangkai在解决最短路问题时,优秀的最短路算法是必不可少的工具在这里介绍几种实用的算法1Floyd2Dijkstra算法3Dijkstra+堆优化4Bellman-Ford5SPFA(ShortestPathFasterAlgorithm)0图的储存方式边目录(记下来,仅此而已)邻接矩阵(适合稠密图)邻接表(适合稀疏图)链式前向星(万能):从每一个点把与之相连的边拉成一条链用
- 图论--最短路问题总结
微臣愚钝
算法(我一生之敌)图论算法
往期文章:算法-图-dijkstra最短路径-CSDN博客Bellman_ford算法--带负权值的单源最短路问题,边列表存储-CSDN博客bellman_ford之判断负权回路-CSDN博客bellman_ford之单源有限最短路-CSDN博客Floyd算法--多源最短路-CSDN博客至此已经讲解了三大最短路算法,分别是Dijkstra、Bellman_ford和Floyd。如果遇到单源且边为正
- ASP.NET站点配置以及VS2008下C#、JavaScript联合调试(Ajax) ----以最短路径Dijstra最短路问题为例
刘一哥GIS
《VS/C/C++/C#》ASP.NETIIS最短路径ajax
实验任务描述:用VS2008构造ASP.NET站点开发环境;用ASP.NET完成JavaScript开发调试;用Ext3.0.0完成一个简单的树显示站;WebService程序设计,Dijstra最短路Web服务;JavaScript通过Ajax技术调用WebService;一、Windows下WEB共享设置打开你的WINDOWS,鼠标点开“我的电脑”,寻找下你机器的WINDOWS版本信息,如果你
- 单源最短路径
陵易居士
数据结构与算法算法图论
目录无负权单源最短路径迪杰斯特拉算法(dijkstra)朴素版迪杰斯特拉小根堆优化版本dijkstra有负权的图的单源最短路径SPFA总结无负权单源最短路径在处理图论相关问题时,经常会遇到求一点到其他点的最短距离是多少的问题,很多实际应用场景的题目也可以转化成求最短路的问题,这里我们先来了解没有负权的图的最短路问题.迪杰斯特拉算法(dijkstra)迪杰斯特拉算法是由dijkstra提出的,它的主
- 图论刷题计划与题解1(最短路问题)
cqust_qilin02811
#最短路与分层图图论算法深度优先
文章目录图论刷题计划与题解1(最短路问题)题目1:P1629邮递员送信(建反图做两次dijkstra)题目2:P1144最短路计数题目3:P1828[USACO3.2]香甜的黄油SweetButter题目4:P1576最小花费题目5:P5767[NOI1997]最优乘车题目6:P5764[CQOI2005]新年好图论刷题计划与题解1(最短路问题)题目1:P1629邮递员送信(建反图做两次dijks
- 多源 BFS 算法详解:从原理到实现,高效解决多源最短路问题
Exhausted、
算法c++算法开发语言宽度优先数据结构
多源BFS是一种解决边权为1的多源最短路问题的高效算法。其核心思想是将所有源点视为一个“超级源点”,通过一次BFS遍历即可计算所有节点到最近源点的最短距离。以下从原理、实现和代码示例三个方面深入讲解:目录一、原理分析1.单源BFSvs多源BFS2.正确性证明3.时间复杂度二、C++实现步骤1.初始化2.BFS扩展三、代码示例四、代码解释初始化阶段BFS扩展阶段五、应用场景六、注意事项一、原理分析1
- ACM寒假培训7--图与树
ZIZIZIZIZ()
算法图论数据结构笔记动态规划
学习总结最短路问题一.Floyd算法1.不可以直接到达的点设为正无穷2.自己到自己的距离设为03.d[k][i][j]为前k个点中i到j的最短路降维代码实现constintN=105;intd[N][N],n;voidfloyd(){for(intk=1;kusingnamespacestd;constintINF=numeric_limits::max();structEdge{intto;in
- 七.网络模型
Kylin524
运筹学python
最小(支撑)树问题最小部分树求解:破圈法:任取一圈,去掉圈中最长边,直到无圈;加边法:取图G的n个孤立点{v1,v2,…,vn}作为一个支撑图,从最短边开始往支撑图中添加,见圈回避,直到连通(有n-1条边)最短路问题求最短路有两种算法:求从某一点至其它各点之间最短离的狄克斯屈拉(Dijkstra)算法求网络图上任意两点之间最短路的Floyd(弗洛伊德)矩阵算法最短路问题的数学模型最大流问题:最大流
- 图论算法——最短路问题
青云遮夜雨
数据结构算法数据结构c语言图论
最短路问题无权最短路简单介绍算法优化(借助队列)Dijkstra算法具有负边值的图的最短路算法无权最短路简单介绍对于无权图G(边没有权值或认为权值为1),如果G是连通的,则每个顶点之间都存在路径。最短路径算法就是要找到一条连接不同顶点的最短路径。例如:V2到V5可以是V2->V5,也可以是V2->V0->V3->V5,很明显最短路是前者算法主要思路:广度优先搜索(bfs):对于每个顶点,我们将跟踪
- 运筹学——图论与最短距离(Python实现)(2),2024年最新Python高级面试framework
m0_60575487
2024年程序员学习图论python面试
适用于wij≥0,给出了从vs到任意一个点vj的最短路。Dijkstra算法是在1959年提出来的。目前公认,在所有的权wij≥0时,这个算法是寻求最短路问题最好的算法。并且,这个算法实际上也给出了寻求从一个始定点vs到任意一个点vj的最短路。2案例1——贪心算法实现==============2.1旅行商问题(TSP)**旅行商问题(TravelingSalesmanProblem,TSP)**
- 刷题Day64|Floyd 算法精讲:97. 小明逛公园、A * 算法精讲:127. 骑士的攻击
风啊雨
算法
Floyd算法精讲解决多源最短路问题,即求多个起点到多个终点的多条最短路径。dijkstra朴素版、dijkstra堆优化、Bellman算法、Bellman队列优化(SPFA)都是单源最短路,即只能有一个起点。Floyd算法对边的权值正负没有要求,都可以处理。思路:核心思想是动态规划。分两种情况:(1)节点i到节点j的最短路径经过节点k:grid[i][j][k]=grid[i][k][k-1]
- 多源BFS(新手也能看懂版)
痴心为何言
宽度优先算法c++leetcode
多源BFS与单源BFS的区别单源BFS:是一个起点到一个终点的最短路问题多源BFS:是多个起点到一个终点的最短路问题怎么解决多源BFS问题正常来说,在我们会了单源BFS的使用后,面对多个起点到一个终点的最短路问题也就是多源BFS,我们最先想到的就是暴力做法,也就是将多个起点分成一份份一个起点到一个终点的单源BFS问题,这样我们每个起点到终点的最短路都求出来再找最小值即可,但这种暴力几乎是一定超时的
- Dijkstra(c++)
少年负剑去
基础算法每日算法题c++java开发语言
迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学家狄克斯特拉于1959年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。迪杰斯特拉算法主要特点是从起始点开始,采用贪心算法的策略,每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止。同时dijkstra算法主要用于解决单源最短路问题(边权为正数),其可以分为两种版本,两种版本
- 算法沉淀——BFS 解决最短路问题(leetcode真题剖析)
爱学习的鱼佬
算法沉淀算法宽度优先leetcode
算法沉淀——BFS解决最短路问题(leetcode真题剖析)01.迷宫中离入口最近的出口02.最小基因变化03.单词接龙04.为高尔夫比赛砍树BFS(广度优先搜索)是解决最短路径问题的一种常见算法。在这种情况下,我们通常使用BFS来查找从一个起始点到目标点的最短路径。具体步骤如下:初始化:从起始点开始,将其放入队列中,并标记为已访问。BFS遍历:不断从队列中取出顶点,然后探索与该顶点相邻且未被访问
- C++ bfs再探迷宫游戏(五十五)【第二篇】
我家小白小花儿
C++算法
今天我们用bfs解决迷宫游戏。1.再探迷宫游戏前面我们已经接触过了迷宫游戏,并且学会了如何使用DFS来解决迷宫最短路问题。用DFS求解迷宫最短路有一个很大的缺点,需要枚举所有可能的路径,读入的地图一旦很大,可能的搜索方案数量会非常多,用DFS搜索显然效率会很低。我们可以借助BFS来求解迷宫游戏。由于BFS是分层搜索,因此,第一次搜索到终点的时候,当前搜索的层数就是最短路径的长度。如果我们要求解起点
- 最短路问题模版总结
Jared_devin
最短路问题Acwing算法c++图论数据结构宽度优先动态规划深度优先
目录思维导图Dijkstra(朴素)思路:代码如下:Dijkstra(堆优化)代码如下:Bellman-Ford思路:对于串联效应的解释:(也就是为什么需要备份数组)代码如下:SPFA思路:为什么和BF算法的判断不一样:代码如下:SPFA判负环思路:代码如下:Floyd编辑思路:代码如下:复习小结~~符号:n为点数,m为边数思维导图(来自y总)注:1.朴素Dijkstra适用于稠密图,堆优化Dij
- 2.13学习总结
啊这泪目了
学习
1.出差(Bleeman—ford)(spfa)(dijkstra)2.最小生成树(prim)(Kruskal)最短路问题:出差https://www.luogu.com.cn/problem/P8802题目描述AA国有�N个城市,编号为1…�1…N小明是编号为11的城市中一家公司的员工,今天突然接到了上级通知需要去编号为�N的城市出差。由于疫情原因,很多直达的交通方式暂时关闭,小明无法乘坐飞机直
- 【第二十二课】最短路:dijkstra算法 ( acwing849 / acwing850 / c++ 代码)
爱写文章的小w
算法--学习笔记算法c++
目录dijkstra算法求最短距离步骤朴素的dijkstra算法---acwing-849代码如下代码思路堆优化版的dijkstra算法---acwing-850代码如下关于最短路问题分有好几种类型:单源就是指:只求从一个顶点到其他各顶点多源是指:要求每个顶点到其他各顶点这些情况对应有不同的算法,这次先介绍dijkstra算法的两种。dijkstra算法求最短距离步骤我们手写的步骤就是:1.确定我
- 【第二十二课】最短路:bellman_ford / spfa算法 (acwing-851 / acwing-853 / c++代码)
爱写文章的小w
算法--学习笔记算法c++最短路
目录前言acwing-853bellman_ford算法的思想代码如下一些解释acwing-851spfa算法思想代码如下一些解释前言由于权重可以表示不同的度量,例如距离、时间、费用等,具体取决于问题的背景,因此会存在一些权值为负数的题目。也就是存在负权边的最短路问题。dijkstra算法由于每次都选择当前最短路径的节点进行扩展,并不能解决带有负权值的最短路问题。会存在如下图这样的问题根据dijk
- 845. 八数码 Java代码 (bfs)
深街酒徒*
图搜索最短路问题bfs
输入样例:23415x768输出样例19算法思路:通过移动x的位置,找出到达终点状态的最少次数,属于权值为1的最短路问题,用宽搜。由于是从初始状态的图到终止状态的图,所以需要将八数码的所有状态抽象成图中的一个结点。状态表示:八数码是3x3的矩阵,可以将二维矩阵转换为一维的字符串,用字符串存储状态。记录到达每个状态的移动次数:由于不能直接用数组表示距离,所以可以用map记录,key存储每个状态,va
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持